Solveeit Logo

Question

Mathematics Question on applications of integrals

Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0),(1, 3)and(3, 2).

Answer

BL and CM are drawn perpendicular to x-axis.

It can be observed in the following figure that,

Area(ΔACB)=Area (ALBA)+Area(BLMCB)-Area(AMCA)...(1)

Equation of line segment AB is

y-0=301+1\frac {3-0}{1+1}(x+1)

y=32\frac{3}{2}(x+1)

∴Area(ALBA)=

1132(x+1)dx\int_{-1}^{1} \frac{3}{2}(x+1) \,dx

=32\frac{3}{2}[12\frac{1}{2}+1-12\frac{1}{2}+1]= 3units

Equation of the segment BC is

y-3=2331\frac{2-3}{3-1}(x-1)

y=12\frac{1}{2}(-x+7)

∴Area(BLMCB)=1312(x+7)dx\int_{1}^{3} \frac{1}{2}(-x+7) \,dx=12\frac{1}{2}[x22\frac{-x^2}{2}+7x]31=12\frac{1}{2}[92\frac{-9}{2}+21+12\frac{1}{2}-7]=5units

Equation of line segment AC is

y-0=203+1\frac{2-0}{3+1}(x+1)

∴Area(AMCA)=1213(x+1)dx\frac{1}{2}\int_{-1}^{3} (x+1) \,dx=12\frac{1}{2}[x22\frac{-x^2}{2}+x]3-1=12\frac{1}{2}[92\frac{9}{2}+3-12\frac{1}{2}+1]=4units

Therefore, from equation(1),we obtain

Area(ΔABC)=(3+5-4)=4units.