Solveeit Logo

Question

Question: Using integration, find the area of the region bounded by the ellipse \(\dfrac{{{x}^{2}}}{{{a}^{2}}}...

Using integration, find the area of the region bounded by the ellipse x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1

Explanation

Solution

Hint:Plot the curve on a graph. Observe that the curve is symmetrical in all the four quadrants. Hence find the area in the first quadrant, and hence the area of the ellipse will be four times the area in the first quadrant. For finding the area in the first curve quadrant express y in terms of x. Note that y>0 and hence take only the positive sign. Then use the fact that the area under the curve is given by abydx\int_{a}^{b}{ydx}. Substitute suitable values of a and b and integrate and hence find the area.

Complete step-by-step answer:

As is evident from the graph that the curve is symmetrical in the four quadrants. Hence, we will find the area in the first quadrant, and then the total area will be four times the area in the first quadrant.
Now, we have
x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1
Subtracting x2a2\dfrac{{{x}^{2}}}{{{a}^{2}}} from both sides, we get
y2b2=1x2a2\dfrac{{{y}^{2}}}{{{b}^{2}}}=1-\dfrac{{{x}^{2}}}{{{a}^{2}}}
Multiplying both sides by b2{{b}^{2}}, we get
y2=b2(1x2a2){{y}^{2}}={{b}^{2}}\left( 1-\dfrac{{{x}^{2}}}{{{a}^{2}}} \right)
Hence, we have
y=±b1x2a2=±baa2x2y=\pm b\sqrt{1-\dfrac{{{x}^{2}}}{{{a}^{2}}}}=\pm \dfrac{b}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}
Now since in the first quadrant, y>0.
Hence, we have
y=baa2x2y=\dfrac{b}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}
Now consider the vertical strip CDEF.
Here CE = y and EF = dx
Hence the area of the strip will be ydx.
The area in the first quadrant will be the sum of the area of these vertical strips from A to B.
Now at point B, we have y = 0
Hence x2a2=1x2=a2x=±a\dfrac{{{x}^{2}}}{{{a}^{2}}}=1\Rightarrow {{x}^{2}}={{a}^{2}}\Rightarrow x=\pm a
Since the abscissa of point B is positive, we have x=ax=a.
Hence the area in the first quadrant will be 0aydx\int_{0}^{a}{ydx}
Substituting the value of y, we get
The area in the first quadrant is 0abaa2x2dx\int_{0}^{a}{\dfrac{b}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}dx}
Let I=0abaa2x2dxI=\int_{0}^{a}{\dfrac{b}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}dx}
Finding the value of I:
Put x = asint.
Differentiating both sides with respect to t, we get
dxdt=acostdtdx=acostdt\dfrac{dx}{dt}=a\cos tdt\Rightarrow dx=a\cos tdt
When x = 0, we have asint=0sint=0t=0a\sin t=0\Rightarrow \sin t=0\Rightarrow t=0
When x = a, we have asint=asint=1t=π2a\sin t=a\Rightarrow \sin t=1\Rightarrow t=\dfrac{\pi }{2}
Hence we have
I=ba0π2a2a2sin2tacostdt=ab0π21sin2tcostdtI=\dfrac{b}{a}\int_{0}^{\dfrac{\pi }{2}}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}t}a\cos tdt}=ab\int_{0}^{\dfrac{\pi }{2}}{\sqrt{1-{{\sin }^{2}}t}\cos tdt}
Now, we know that 1sin2t=cos2t1-{{\sin }^{2}}t={{\cos }^{2}}t
Hence, we have
I=ab0π2cos2tcostdt=ab0π2costcostdtI=ab\int_{0}^{\dfrac{\pi }{2}}{\sqrt{{{\cos }^{2}}t}\cos tdt}=ab\int_{0}^{\dfrac{\pi }{2}}{\left| \cos t \right|\cos tdt}
Since in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right) cost is positive, we have cost=cost\left| \cos t \right|=\cos t
Hence, we have
I=ab0π2cos2tdt (i)I=ab\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}tdt}\text{ }\left( i \right)
We know that abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}
Hence, we have
I=ab0π2cos2(π2x)dxI=ab\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}\left( \dfrac{\pi }{2}-x \right)dx}
We know that cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\sin x
Hence, we have
I=ab0π2sin2xdx (ii)I=ab\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}x}dx\text{ }\left( ii \right)
Adding equation (i) and equation (ii), we get
2I=ab0π2(sin2t+cos2t)dt2I=ab\int_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}t+{{\cos }^{2}}t \right)dt}
We know that sin2t+cos2t=1{{\sin }^{2}}t+{{\cos }^{2}}t=1
Hence, we have
2I=ab0π21dt=abt0π2=ab(π20)=πab22I=ab\int_{0}^{\dfrac{\pi }{2}}{1dt}=ab\left. t \right|_{0}^{\dfrac{\pi }{2}}=ab\left( \dfrac{\pi }{2}-0 \right)=\dfrac{\pi ab}{2}
Dividing both sides by 2, we get
I=πab4I=\dfrac{\pi ab}{4}
Hence the area in the first quadrant is πab4\dfrac{\pi ab}{4}
Hence the total area of the ellipse is 4×πab4=πab4\times \dfrac{\pi ab}{4}=\pi ab

Note: [1] We can directly solve I using the fact that a2x2=x2a2x2+a22sin1xa\int{\sqrt{{{a}^{2}}-{{x}^{2}}}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}}
Hence, we have
I=ba(x2a2x2+a22sin1xa0a)=ba[(a2a2a2+a22sin1aa)(02a202+a22sin10a)] =ba[(0+a22×π2)(00)]=πab4 \begin{aligned} & I=\dfrac{b}{a}\left( \left. \dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a} \right|_{0}^{a} \right)=\dfrac{b}{a}\left[ \left( \dfrac{a}{2}\sqrt{{{a}^{2}}-{{a}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{a}{a} \right)-\left( \dfrac{0}{2}\sqrt{{{a}^{2}}-{{0}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{0}{a} \right) \right] \\\ & =\dfrac{b}{a}\left[ \left( 0+\dfrac{{{a}^{2}}}{2}\times \dfrac{\pi }{2} \right)-\left( 0-0 \right) \right]=\dfrac{\pi ab}{4} \\\ \end{aligned}
Which is the same as obtained above.