Solveeit Logo

Question

Question: Using integration, find the area of the region bounded by the line \(y=1+\left| x+1 \right|,x=-2,x=3...

Using integration, find the area of the region bounded by the line y=1+x+1,x=2,x=3 and y=0y=1+\left| x+1 \right|,x=-2,x=3\ and\ y=0.

Explanation

Solution

Hint: We will first start by drawing the graph of curves y=1+x+1,x=2,x=3 and y=0y=1+\left| x+1 \right|,x=-2,x=3\ and\ y=0. Then we will use the fact that the algebraic area under a curve f(x)f\left( x \right) can be found by integration as f(x)dx\int{f\left( x \right)dx}.

Complete step-by-step answer:
Now, before starting the solution we first to understand that the physical significance of abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx} is,

Now, we can see from the graph that abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx} is nothing but the area bounded by the line y=f(x),x=a,x=b and xaxisy=f\left( x \right),x=a,x=b\ and\ x-axis.
Now, we know that the graph of y=1+x+1y=1+\left| x+1 \right| is shifted 1 units upward and 1 units leftwards from the origin of the graph of y=(x)y=\left( x \right). So, we have the graph by using the concept of shifted origin as,

Now, we will first find the area of region ADEO. So, we have the equation of line AO as,
y=1x1 y=x \begin{aligned} & y=1-x-1 \\\ & \Rightarrow y=-x \\\ \end{aligned}
So, we have the area of region,
ADEO=21(x)dxADEO=\int\limits_{-2}^{-1}{\left( -x \right)dx}
We have put the limits as x = -1 to x = -2 from the graph. Also, we know that xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}. So, we have,
x2221 ((1)22(2)22) (122) (32) 32sq units \begin{aligned} & \Rightarrow \left. \dfrac{-{{x}^{2}}}{2} \right|_{-2}^{-1} \\\ & \Rightarrow \left( \dfrac{{{\left( -1 \right)}^{2}}}{2}-\dfrac{{{\left( -2 \right)}^{2}}}{2} \right) \\\ & \Rightarrow -\left( \dfrac{1}{2}-2 \right) \\\ & \Rightarrow -\left( -\dfrac{3}{2} \right) \\\ & \Rightarrow \dfrac{3}{2}sq\ units \\\ \end{aligned}
Now, similarly we will find the area of region OECB as,
13(x+2)dx\int\limits_{-1}^{3}{\left( x+2 \right)dx}
We have put the limits as x = -1 to x = 3 by referring the graph and again using the fact that xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}. We have,
(x22+2x)13 (322(1)22+2(3(1))) (9212+2(3+1)) (912+2×4) (82+2×4) 4+8 12sq units \begin{aligned} & \Rightarrow \left( \dfrac{{{x}^{2}}}{2}+2x \right)_{-1}^{3} \\\ & \Rightarrow \left( \dfrac{{{3}^{2}}}{2}-\dfrac{{{\left( -1 \right)}^{2}}}{2}+2\left( 3-\left( -1 \right) \right) \right) \\\ & \Rightarrow \left( \dfrac{9}{2}-\dfrac{1}{2}+2\left( 3+1 \right) \right) \\\ & \Rightarrow \left( \dfrac{9-1}{2}+2\times 4 \right) \\\ & \Rightarrow \left( \dfrac{8}{2}+2\times 4 \right) \\\ & \Rightarrow 4+8 \\\ & \Rightarrow 12sq\ units \\\ \end{aligned}
So, the total area bounded by the region is,
ar of region ADEO + ar of region OECD
32+12 3+242 272sq units \begin{aligned} & \Rightarrow \dfrac{3}{2}+12 \\\ & \Rightarrow \dfrac{3+24}{2} \\\ & \Rightarrow \dfrac{27}{2}sq\ units \\\ \end{aligned}
Therefore, the total area bounded by the given curves is 272sq units\dfrac{27}{2}sq\ units.

Note: While solving the question it is important to note how we have drawn the graph of (y1)=x(1)\left( y-1 \right)=\left| x-\left( -1 \right) \right| from the graph of y=xy=\left| x \right| by using the concept of shifted origin.