Solveeit Logo

Question

Question: Using integration, find the area of the \(\Delta ABC\), the equations of whose sides AB, BC and AC a...

Using integration, find the area of the ΔABC\Delta ABC, the equations of whose sides AB, BC and AC are given by y=4x+5,x+y=5 and 4y=x+5y=4x+5,x+y=5\ and\ 4y=x+5 respectively.

Explanation

Solution

We will start by drawing a rough diagram of the triangle by plotting the given lines and finding their point of intersection. Then we will divide the area into parts as per the graph to find the area of that region with the help of the integration as we know that the area given by integration is algebraic rather than geometric meaning that if the curve is below x-axis then the area will be negative so we have to calculate the area of such parts separately by using integration and add them to find the overall area.

Complete step-by-step answer:
Now, before starting the solution we first to understand that the physical significance of abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx} is,

Now, we can see from the graph that abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx} is nothing but the area bounded by the line y=f(x),x=a,x=b and xaxisy=f\left( x \right),x=a,x=b\ and\ x-axis.
Now, we have the graph of lines y=4x+5,x+y=5 and 4y=x+5y=4x+5,x+y=5\ and\ 4y=x+5 as,

Now, we have the point A as point of intersection of y=4x+5 and x+y=5y=4x+5\ and\ x+y=5. So, we have,
5x=4x+5 0=5x x=0 \begin{aligned} & 5-x=4x+5 \\\ & 0=5x \\\ & x=0 \\\ \end{aligned}
Substituting this in x+y=5x+y=5 we have y = 5 and therefore, the point A is (0, 5).
Now, point B is point of intersection of,
x+y=5.......(1) 4y=x+5.......(2) \begin{aligned} & x+y=5.......\left( 1 \right) \\\ & 4y=x+5.......\left( 2 \right) \\\ \end{aligned}
Now, substituting x=5yx=5-y from (1) in (2). We have,
4y=5y+5 5y=10 y=2 \begin{aligned} & 4y=5-y+5 \\\ & 5y=10 \\\ & y=2 \\\ \end{aligned}
Now, we substitute y = 2 in (1). So, we have x = 5 – 2 = 3. Therefore, the point B is (3, 2).
Now, point C is point of intersection of,
4y=x+5.......(3) y=4x+5.......(4) \begin{aligned} & 4y=x+5.......\left( 3 \right) \\\ & y=4x+5.......\left( 4 \right) \\\ \end{aligned}
So, now we substitute y from (4) in (3).
4(4x+5)=x+5 16x+20=x+5 15x=15 x=1 \begin{aligned} & \Rightarrow 4\left( 4x+5 \right)=x+5 \\\ & \Rightarrow 16x+20=x+5 \\\ & \Rightarrow 15x=-15 \\\ & \Rightarrow x=-1 \\\ \end{aligned}
Now, we substitute x=1x=-1 in (4). So,
y=4+5 y=1 \begin{aligned} & \Rightarrow y=-4+5 \\\ & \Rightarrow y=1 \\\ \end{aligned}
Therefore, the point C is (-1, 1).
Now, we will first find the area of ΔACO\Delta ACO. So, we can see that,
arΔACO=arΔAFEarFCOE =arΔAFEarΔFGHarCHEO \begin{aligned} & ar\Delta ACO=ar\Delta AFE-arFCOE \\\ & =ar\Delta AFE-ar\Delta FGH-arCHEO \\\ \end{aligned}
Now, we have to find the x – coordinate of point H and point O which we can see are same as that of point C and point E respectively as -1, 0. So, we have,
540(4x+5)dx10(x+54)dx541(4x+5)dx\Rightarrow \int\limits_{\dfrac{-5}{4}}^{0}{\left( 4x+5 \right)dx-\int\limits_{-1}^{0}{\left( \dfrac{x+5}{4} \right)}}dx-\int\limits_{\dfrac{-5}{4}}^{-1}{\left( 4x+5 \right)dx}
Now, we know that xndx=xn+1n+1\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}. So, we have,
4x22+5x540(x28+54x)10(4x22+5x)541 2(54)2+5(0+54)((1)28+54(0(1)))(2((1)2(54)2+)+5(1+54)) 2(2516)+5×54(18+54)(2(12516)+5(544)) 258+254(1018)(2258+54) 25+50898(134258) 75898(26258) 7589818 75108 658sq units \begin{aligned} & \Rightarrow 4\dfrac{{{x}^{2}}}{2}+\left. 5x \right|_{\dfrac{-5}{4}}^{0}-\left( \dfrac{{{x}^{2}}}{8}+\dfrac{5}{4}x \right)_{-1}^{0}-\left( 4\dfrac{{{x}^{2}}}{2}+5x \right)_{\dfrac{-5}{4}}^{-1} \\\ & \Rightarrow 2{{\left( \dfrac{-5}{4} \right)}^{2}}+5\left( 0+\dfrac{5}{4} \right)-\left( \dfrac{-{{\left( -1 \right)}^{2}}}{8}+\dfrac{5}{4}\left( 0-\left( -1 \right) \right) \right)-\left( 2\left( {{\left( -1 \right)}^{2}}-{{\left( \dfrac{-5}{4} \right)}^{2}}+ \right)+5\left( -1+\dfrac{5}{4} \right) \right) \\\ & \Rightarrow 2\left( \dfrac{25}{16} \right)+\dfrac{5\times 5}{4}-\left( -\dfrac{1}{8}+\dfrac{5}{4} \right)-\left( 2\left( 1-\dfrac{25}{16} \right)+5\left( \dfrac{5-4}{4} \right) \right) \\\ & \Rightarrow \dfrac{25}{8}+\dfrac{25}{4}-\left( \dfrac{10-1}{8} \right)-\left( 2-\dfrac{25}{8}+\dfrac{5}{4} \right) \\\ & \Rightarrow \dfrac{25+50}{8}-\dfrac{9}{8}-\left( \dfrac{13}{4}-\dfrac{25}{8} \right) \\\ & \Rightarrow \dfrac{75}{8}-\dfrac{9}{8}-\left( \dfrac{26-25}{8} \right) \\\ & \Rightarrow \dfrac{75}{8}-\dfrac{9}{8}-\dfrac{1}{8} \\\ & \Rightarrow \dfrac{75-10}{8} \\\ & \Rightarrow \dfrac{65}{8}sq\ units \\\ \end{aligned}
Now, similarly we have the area as,
arΔAOE=arΔAEIarEOBI =arΔAEIarEOBGarBGI 05(5x)dx03x+54dx35(5x)dx \begin{aligned} & ar\Delta AOE=ar\Delta AEI-arEOBI \\\ & =ar\Delta AEI-arEOBG-arBGI \\\ & \Rightarrow \int\limits_{0}^{5}{\left( 5-x \right)dx-\int\limits_{0}^{3}{\dfrac{x+5}{4}}}dx-\int\limits_{3}^{5}{\left( 5-x \right)dx} \\\ \end{aligned}
Now, we know that the area xndx=xn+1n+1\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}. So, we have,
(5xx22)0514(x22+5x)03(5xx22)35 (5(50)(250)2)14(902+5(30))(5(53)(2592)) (25252)14(92+15)(108) 25214(392)2 2523982 10039168 100558 458sq units \begin{aligned} & \Rightarrow \left( 5x-\dfrac{{{x}^{2}}}{2} \right)_{0}^{5}-\dfrac{1}{4}\left( \dfrac{{{x}^{2}}}{2}+5x \right)_{0}^{3}-\left( 5x-\dfrac{{{x}^{2}}}{2} \right)_{3}^{5} \\\ & \Rightarrow \left( 5\left( 5-0 \right)-\dfrac{\left( 25-0 \right)}{2} \right)-\dfrac{1}{4}\left( \dfrac{9-0}{2}+5\left( 3-0 \right) \right)-\left( 5\left( 5-3 \right)-\left( \dfrac{25-9}{2} \right) \right) \\\ & \Rightarrow \left( 25-\dfrac{25}{2} \right)-\dfrac{1}{4}\left( \dfrac{9}{2}+15 \right)-\left( 10-8 \right) \\\ & \Rightarrow \dfrac{25}{2}-\dfrac{1}{4}\left( \dfrac{39}{2} \right)-2 \\\ & \Rightarrow \dfrac{25}{2}-\dfrac{39}{8}-2 \\\ & \Rightarrow \dfrac{100-39-16}{8} \\\ & \Rightarrow \dfrac{100-55}{8} \\\ & \Rightarrow \dfrac{45}{8}sq\ units \\\ \end{aligned}
Therefore, the area of bounded region is,
arΔACO+arΔAOB 65+458 1108 554sq units \begin{aligned} & ar\Delta ACO+ar\Delta AOB \\\ & \Rightarrow \dfrac{65+45}{8} \\\ & \Rightarrow \dfrac{110}{8} \\\ & \Rightarrow \dfrac{55}{4}sq\ units \\\ \end{aligned}
Therefore, the area of the bounded region is 554sq units\dfrac{55}{4}sq\ units.

Note: While solving the question it is important to note that we have used the x – coordinate of G as limit and since the x – coordinate of G is same as that of B. Therefore, we have used the x – coordinate of B for substituting the limit while finding the area of ΔAOB\Delta AOB.