Solveeit Logo

Question

Question: Using integration, find the area bounded by the curve \({{x}^{2}}=4y\) and the line \(x=4y-2\)....

Using integration, find the area bounded by the curve x2=4y{{x}^{2}}=4y and the line x=4y2x=4y-2.

Explanation

Solution

We start solving this problem by first finding the points of intersection of the given curves. Then we find the area of the region bounded by each curve with x-axis between the points of intersection using the integration formula for area abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx}. Then we subtract the area of the smaller curve from the area of the larger one to get the area of the required region.

Complete step-by-step solution:
First, let us find the points of intersection of the given curves.
x2=4yy=x24{{x}^{2}}=4y\Rightarrow y=\dfrac{{{x}^{2}}}{4}
Substituting it in the equation of line
x=4y2 x=4(x24)2 x=x22 x2x2=0 (x2)(x+1)=0 x=2,1 \begin{aligned} & \Rightarrow x=4y-2 \\\ & \Rightarrow x=4\left( \dfrac{{{x}^{2}}}{4} \right)-2 \\\ & \Rightarrow x={{x}^{2}}-2 \\\ & \Rightarrow {{x}^{2}}-x-2=0 \\\ & \Rightarrow \left( x-2 \right)\left( x+1 \right)=0 \\\ & \Rightarrow x=2,-1 \\\ \end{aligned}
When x=2, y=x24=224=44y=1y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{2}^{2}}}{4}=\dfrac{4}{4}\Rightarrow y=1
When x=-1, y=x24=(1)24=14y=14y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{\left( -1 \right)}^{2}}}{4}=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{4}
So, points of intersection of the two curves are (2,1)\left( 2,1 \right) and (1,14)\left( -1,\dfrac{1}{4} \right).
Now let us look at the plot

We need to find the area of the shaded region. As we see our required area can be written as the difference between the area of line and parabola between x=-1 and x=2.
Let us consider the formula for finding the area of region bounded by a function f(x) between x=a and x=b,
abf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx}
Using this formula, let us find the area of region bounded by curve x2=4y{{x}^{2}}=4y and x-axis between x=-1 and x=2.
12x24dx=1412x2dx 12x24dx=14[x33]12 12x24dx=14[x33]12 12x24dx=14[233(1)33] 12x24dx=14[8313] 12x24dx=14[93] 12x24dx=34................(1) \begin{aligned} & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{{{x}^{2}}dx} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{2}^{3}}}{3}-\dfrac{{{\left( -1 \right)}^{3}}}{3} \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{8}{3}-\dfrac{-1}{3} \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{9}{3} \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{3}{4}................\left( 1 \right) \\\ \end{aligned}
Now, let us find the area of region bounded by curve x=4y2x=4y-2 and x-axis between x=-1 and x=2.
12x+24dx=1412(x+2)dx 12x+24dx=14[x22+2x]12 12x+24dx=14[(222+2(2))((1)22+2(1))] 12x+24dx=14[(42+4)(122)] 12x+24dx=14[(2+4)(32)] 12x+24dx=14[6+32] 12x+24dx=14×152 12x+24dx=158................(2) \begin{aligned} & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{\left( x+2 \right)dx} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-1}^{2} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{{{2}^{2}}}{2}+2\left( 2 \right) \right)-\left( \dfrac{{{\left( -1 \right)}^{2}}}{2}+2\left( -1 \right) \right) \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{4}{2}+4 \right)-\left( \dfrac{1}{2}-2 \right) \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( 2+4 \right)-\left( \dfrac{-3}{2} \right) \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ 6+\dfrac{3}{2} \right] \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\times \dfrac{15}{2} \\\ & \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{15}{8}................\left( 2 \right) \\\ \end{aligned}
So, now we need to subtract the equation (1) from equation (2), to get our required area
15834 98 \begin{aligned} & \Rightarrow \dfrac{15}{8}-\dfrac{3}{4} \\\ & \Rightarrow \dfrac{9}{8} \\\ \end{aligned}
Hence, the area of required region is 98\dfrac{9}{8} square units.
Hence, the answer is 98\dfrac{9}{8} square units.

Note: We can solve this by using a formula too. The area bounded by two curves f(x)f\left( x \right) and g(x)g\left( x \right) between x=a and x=b is ab(f(x)g(x))dx\int\limits_{a}^{b}{\left( f\left( x \right)-g\left( x \right) \right)dx}. Here our f(x)f\left( x \right) is the line and g(x)g\left( x \right) is the parabola. Then we get 12(x+24x24)dx\int\limits_{-1}^{2}{\left( \dfrac{x+2}{4}-\dfrac{{{x}^{2}}}{4} \right)}dx, which is same as what we have done separately. So, one need to remember that both are same and should not confuse that both are different.