Solveeit Logo

Question

Question: Using equation x = Ae<sup>-bt/2m</sup> t cos (ω't + φ) and assuming φ = 0 at t = 0, find the express...

Using equation x = Ae-bt/2m t cos (ω't + φ) and assuming φ = 0 at t = 0, find the expression for acceleration at t = 0

A

A[kmb24m2]A\left\lbrack \frac{k}{m} - \frac{b^{2}}{4m^{2}} \right\rbrack

B

A[km+b24m2]A\left\lbrack \frac{k}{m} + \frac{b^{2}}{4m^{2}} \right\rbrack

C

A[b24m2km]A\left\lbrack \frac{b^{2}}{4m^{2}} - \frac{k}{m} \right\rbrack

D

A[b2mkm]A\left\lbrack \frac{b}{2m} - \frac{k}{m} \right\rbrack

Answer

A[b24m2km]A\left\lbrack \frac{b^{2}}{4m^{2}} - \frac{k}{m} \right\rbrack

Explanation

Solution

dxdt=b2mAebt/2mcos(ωt)Aebt/2mωsin(ωt)\frac{dx}{dt} = \frac{- b}{2m}Ae^{- bt/2m}\cos(\omega't) - Ae^{- bt/2m}\omega\sin(\omega't) d2xdt2=Ab2m[b2mebt/emcos(ωt)ebt/emωsin(ωt)]+bA2mωebt/2msin(ωt+φ)Aω2ebt/2mcos(ωt+φ) d2xdt2r=0\frac{d^{2}x}{dt^{2}} = - \frac{- Ab}{2m}\left\lbrack \frac{- b}{2m}e^{- bt/em}\cos(\omega't) - e^{- bt/em}\omega'\sin(\omega't) \right\rbrack + \frac{bA}{2m}\omega'e^{bt/2m}\sin(\omega't + \varphi) - A\omega^{'2}e^{- bt/2m}\cos(\omega't + \varphi)\left. \ \frac{d^{2}x}{dt^{2}} \right|_{r = 0}

= - A'ω2 + A (b2/4m2) = A[b24m2km]A\left\lbrack \frac{b^{2}}{4m^{2}} - \frac{k}{m} \right\rbrack