Solveeit Logo

Question

Mathematics Question on Matrices

Using elementary transformations, find the inverse of matrix [112 123 311].\begin{bmatrix}-1&1&2\\\ 1&2&3\\\ 3&1&1\end{bmatrix}.

A

[111 875 543]\begin{bmatrix}1&-1&1\\\ -8&7&-5\\\ 5&-4&3\end{bmatrix}

B

[211 675 543]\begin{bmatrix}2&-1&1\\\ -6&7&-5\\\ 5&-4&3\end{bmatrix}

C

[211 645 543]\begin{bmatrix}2&-1&1\\\ -6&4&-5\\\ 5&-4&3\end{bmatrix}

D

[111 645 543]\begin{bmatrix}1&-1&1\\\ -6&4&-5\\\ 5&-4&3\end{bmatrix}

Answer

[111 875 543]\begin{bmatrix}1&-1&1\\\ -8&7&-5\\\ 5&-4&3\end{bmatrix}

Explanation

Solution

Given, matrix A=[112 123 311]A =\begin{bmatrix}-1&1&2\\\ 1&2&3\\\ 3&1&1\end{bmatrix}, then A=IAA = IA [112 123 311]=[100 010 001]A\Rightarrow\begin{bmatrix}-1&1&2\\\ 1&2&3\\\ 3&1&1\end{bmatrix}=\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}A Applying R2R2+R1,R3R3+3R1R_{2}\rightarrow R_{2}+R_{1}, R3\rightarrow R_{3} + 3R_{1}, we get [112 035 047]=[100 010 301]A\begin{bmatrix}-1&1&2\\\ 0&3&5\\\ 0&4&7\end{bmatrix}=\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 3&0&1\end{bmatrix}A Applying R1(1)R1R_{1}\rightarrow \left(-1\right)R_{1}, we get [112 035 047]=[100 110 301]A\begin{bmatrix}1&-1&-2\\\ 0&3&5\\\ 0&4&7\end{bmatrix}=\begin{bmatrix}-1&0&0\\\ 1&1&0\\\ 3&0&1\end{bmatrix}A Applying R2R2R3R_{2}\rightarrow R_{2}-R_{3}, we get [112 012 047]=[100 211 301]A\begin{bmatrix}1&-1&-2\\\ 0&-1&-2\\\ 0&4&7\end{bmatrix}=\begin{bmatrix}-1&0&0\\\ -2&1&-1\\\ 3&0&1\end{bmatrix}A Applying R1R1R2,andR3R3+4R2R_{1}\rightarrow R_{1} -R_{2}, and R_{3}\rightarrow R_{3} + 4R_{2 },we get [100 012 001]=[111 211 543]A\begin{bmatrix}1&0&0\\\ 0&-1&-2\\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\\ -2&1&-1\\\ -5&4&-3\end{bmatrix}A Applying R2(1)R2R_{2}\rightarrow\left(-1\right)R_{2}, we get [100 012 001]=[111 211 543]A\begin{bmatrix}1&0&0\\\ 0&1&2\\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\\ 2&-1&1\\\ 5&4&-3\end{bmatrix}A Applying R2R2+2R3R_{2}\rightarrow R_{2} +2R_{3}, we get [100 010 001]=[111 875 543]A\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\\ -8&7&-5\\\ 5&-4&3\end{bmatrix}A A1=[111 875 543]A^{-1}=\begin{bmatrix}1&-1&1\\\ -8&7&-5\\\ 5&-4&3\end{bmatrix}