Question
Question: Using elementary row transformation find the inverse of the matrix \(A = \begin{bmatrix} 3 & - 1 & -...
Using elementary row transformation find the inverse of the matrix A=323−10−5−2−10
A
$\begin{bmatrix}
- 5/8 & 5/4 & 1/8 \
- 3/8 & 3/4 & - 1/8 \
- 5/4 & 3/2 & 1/4 \end{bmatrix}$
B
81530−5−33111
C
81531056−121−12
D
None of these
Answer
$\begin{bmatrix}
- 5/8 & 5/4 & 1/8 \
- 3/8 & 3/4 & - 1/8 \
- 5/4 & 3/2 & 1/4 \end{bmatrix}$
Explanation
Solution
We have A=IA ⇒ 323−10−5−2−10=100010001A
Applying (R1→R1−R2) 123−10−5−1−10=100−110001A
Applying R2→R2−2R1 and R3→R3−3R1,
$\begin{bmatrix} 1 & - 1 & - 1 \ 0 & 2 & - 1 \ 0 & - 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1 & 0 \
- 2 & 3 & 0 \
- 3 & 3 & 1 \end{bmatrix}AApplyingR_{2} \rightarrow R_{2}/2,\begin{bmatrix} 1 & - 1 & - 1 \ 0 & 1 & 1/2 \ 0 & - 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1 & 0 \
- 1 & 3/2 & 0 \
- 3 & 3 & 1 \end{bmatrix}A$
Applying R1→R1+R2 and R3→R3+2R2,
1 & 0 & - 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ - 1 & 3/2 & 0 \\ - 5 & 6 & 1 \end{bmatrix}A$$ Applying $R_{3} \rightarrow R_{3}/4$, $\begin{bmatrix} 1 & 0 & - 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ - 1 & 3/2 & 0 \\ 5/4 & 6/4 & 1/4 \end{bmatrix}A$Applying $R_{1} \rightarrow R_{1} + \frac{1}{2}R_{3}\text{and }R_{2} \rightarrow R_{2} - \frac{1}{2}R_{3}$,$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} - 5/8 & 5/4 & 1/8 \\ - 3/8 & 3/4 & - 1/8 \\ - 5/4 & 3/2 & 1/4 \end{bmatrix}A$ $A^{- 1} = \begin{bmatrix} - 5/8 & 5/4 & 1/8 \\ - 3/8 & 3/4 & - 1/8 \\ - 5/4 & 3/2 & 1/4 \end{bmatrix}$