Solveeit Logo

Question

Question: Using disk or ring method, how do you find the volume of \[y = {x^2} - x,y = 3 - {x^2}\] about \[y =...

Using disk or ring method, how do you find the volume of y=x2x,y=3x2y = {x^2} - x,y = 3 - {x^2} about y=4y = 4 ?

Explanation

Solution

Hint : Here, we find the volume of the given function using the disk methods. The disk method, also known as the method of disks or rings, is a way to calculate the volume of a solid of revolution by taking the sum of cross-sectional areas of infinitesimal thickness of the solid. The volume V of a solid of revolution, V=πab((f(x))2(g(x))2)dxV = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} .

Complete step by step solution:
The given equation of parabola, we have

y=x2x(1) y=3x2(2) y=4(3)  y = {x^2} - x \to \left( 1 \right) \\\ y = 3 - {x^2} \to \left( 2 \right) \\\ y = 4 \to \left( 3 \right) \\\

The region enclosed by the three curve in the below graph,

The volume V of a solid of revolution, V=πab((f(x))2(g(x))2)dxV = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} .
Where, VV - Volume of solid
aa - Least value of xx of f(x)f(x)
bb - Highest value of xx of f(x)f(x)
f(x)f(x) - The value of radius of the disc
dxdx - The value of height of the disc
To find the point of intersection, where the two parabola meets,

x2x=3x2 x2x3+x2=0   {x^2} - x = 3 - {x^2} \\\ {x^2} - x - 3 + {x^2} = 0 \;

By simplifying the equation to find the point of intersection

2x2x3=0 x(2x1)=3   2{x^2} - x - 3 = 0 \\\ x(2x - 1) = 3 \;

To simplify, we get
x=3x = 3 ,
Then, another factor is

2x1=3 2x=3+1 x=42=2   2x - 1 = 3 \\\ 2x = 3 + 1 \\\ x = \dfrac{4}{2} = 2 \;

The point of intersection, (a,b)=(2,3)(a,b) = (2,3)
Let the given parabola equation,

f(x)=x2x g(x)=3x2   f(x) = {x^2} - x \\\ g(x) = 3 - {x^2} \;

To find the volume,
V=πab((f(x))2(g(x))2)dxV = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx}
By substituting values in the formula

 V=π23(((x2)22x2x+x2)(322×3x2+(x2)2))dx V=π23((x42x3+x2)(96x2+x4))dx   \\\ V = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx} \\\ V = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx} \;

To simply it by apply the algebraic formula, (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2}
V=π23(((x2)22x2x+x2)(322×3x2+(x2)2))dxV = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx}
V=π23((x42x3+x2)(96x2+x4))dxV = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx}
To evaluate it by using integral, we get
V=π[(x552x44+x33)(9x6x33+x55)]23V = \pi \left[ {\left( {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3}} \right) - \left( {9x - \dfrac{{6{x^3}}}{3} + \dfrac{{{x^5}}}{5}} \right)} \right] _2^3
By simplify the above equation, we get
V=π[x552x44+x339x+6x33x55]23V = \pi \left[ {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3} - 9x + \dfrac{{6{x^3}}}{3} - \dfrac{{{x^5}}}{5}} \right] _2^3
Performing addition and subtraction to simplify, we get
V=π[2x44+7x339x]23V = \pi \left[ { - \dfrac{{2{x^4}}}{4} + \dfrac{{7{x^3}}}{3} - 9x} \right] _2^3
Solving the equation by substitute upper and lower limit, we get
V=π[(2×344+7×3339×3)(2×244+7×2339×2)]V = \pi \left[ {\left( { - \dfrac{{2 \times {3^4}}}{4} + \dfrac{{7 \times {3^3}}}{3} - 9 \times 3} \right) - \left( { - \dfrac{{2 \times {2^4}}}{4} + \dfrac{{7 \times {2^3}}}{3} - 9 \times 2} \right)} \right]
By simplify the power of the value,
V=π(2×814+7×2739×3+2×1647×83+9×2)V = \pi \left( { - \dfrac{{2 \times 81}}{4} + \dfrac{{7 \times 27}}{3} - 9 \times 3 + \dfrac{{2 \times 16}}{4} - \dfrac{{7 \times 8}}{3} + 9 \times 2} \right)
By performing operation for the same denominator value, we get
V=π((2×81)+(2×16)4+(7×27)(7×8)3+9(3+2))V = \pi \left( {\dfrac{{ - (2 \times 81) + (2 \times 16)}}{4} + \dfrac{{(7 \times 27) - (7 \times 8)}}{3} + 9( - 3 + 2)} \right)
V=π(2(81+16)4+7(278)3+9(1))V = \pi \left( {\dfrac{{2( - 81 + 16)}}{4} + \dfrac{{7(27 - 8)}}{3} + 9( - 1)} \right)
Now, we get
V=π(2(65)4+7(19)39)V = \pi \left( {\dfrac{{2( - 65)}}{4} + \dfrac{{7(19)}}{3} - 9} \right)
Take LCM on above equation, we get
V=π(2(65)(3)+7(19)(4)9(12)12)=π(390+53210812)V = \pi \left( {\dfrac{{2( - 65)(3) + 7(19)(4) - 9(12)}}{{12}}} \right) = \pi \left( {\dfrac{{ - 390 + 532 - 108}}{{12}}} \right)
V=π(532498)12=π3412=π176V = \pi \dfrac{{(532 - 498)}}{{12}} = \pi \dfrac{{34}}{{12}} = \pi \dfrac{{17}}{6}
V=176πV = \dfrac{{17}}{6}\pi
Therefore, the volume bounded by the region, V=176πV = \dfrac{{17}}{6}\pi
So, the correct answer is “ V=176πV = \dfrac{{17}}{6}\pi ”.

Note : A solid of revolution is formed by rotating a two-dimensional function around an axis to produce a three-dimensional shape (either a full solid or a ring).Here we use integration to solve the volume bounded by the region with the point of intersection. We remember the formula for volume met by the two parabola functions.