Solveeit Logo

Question

Question: Using the discriminant method, find the range of $\frac{x^2-2x+1}{x^2-3x+2}$....

Using the discriminant method, find the range of x22x+1x23x+2\frac{x^2-2x+1}{x^2-3x+2}.

A

R{0,1}\mathbb{R} \setminus \{0, 1\}

B

R{1}\mathbb{R} \setminus \{1\}

C

R{0}\mathbb{R} \setminus \{0\}

D

R\mathbb{R}

Answer

R{0,1}\mathbb{R} \setminus \{0, 1\}

Explanation

Solution

Let y=x22x+1x23x+2y = \frac{x^2-2x+1}{x^2-3x+2}. Rearranging yields (y1)x2+(23y)x+(2y1)=0(y-1)x^2 + (2-3y)x + (2y-1) = 0.

Case 1: y=1y=1. The equation becomes x+1=0-x+1=0, so x=1x=1. However, x=1x=1 is not in the domain of the original function, so y1y \neq 1.

Case 2: y1y \neq 1. For real solutions of xx, the discriminant Δ=(23y)24(y1)(2y1)=y2\Delta = (2-3y)^2 - 4(y-1)(2y-1) = y^2 must be non-negative. This is always true (y20y^2 \ge 0).

The roots for xx are x=(23y)±y22(y1)=3y2±y2(y1)x = \frac{-(2-3y) \pm \sqrt{y^2}}{2(y-1)} = \frac{3y-2 \pm y}{2(y-1)}. The roots are x1=2y1y1x_1 = \frac{2y-1}{y-1} and x2=1x_2 = 1. Since x1x \neq 1, x2x_2 is an extraneous solution.

The valid root x1=2y1y1x_1 = \frac{2y-1}{y-1} must not be equal to the excluded values of the original function's domain, which are x=1x=1 and x=2x=2.

  • x11    2y1y11    2y1y1    y0x_1 \neq 1 \implies \frac{2y-1}{y-1} \neq 1 \implies 2y-1 \neq y-1 \implies y \neq 0.
  • x12    2y1y12    2y12y2    12x_1 \neq 2 \implies \frac{2y-1}{y-1} \neq 2 \implies 2y-1 \neq 2y-2 \implies -1 \neq -2, which is always true.

Therefore, y1y \neq 1 and y0y \neq 0. The range is R{0,1}\mathbb{R} \setminus \{0, 1\}.