Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Using differentials,find the approximate value of each of the following (a) (1781)14(\frac{17}{81})^\frac{1}{4} (b) (33)15(33)^{-\frac{1}{5}}

Answer

(a) Consider y=x14y=x^\frac{1}{4}.Let x=1661\frac{16}{61} and Δx=181\frac{1}{81}
Then,Δy=(x+Δx)1/4-x1/4
= (1781)14(\frac{17}{81})^\frac{1}{4}- (1681)14(\frac{16}{81})^\frac{1}{4}
= (1781)14(\frac{17}{81})^\frac{1}{4} -23\frac{2}{3}
(1781)14(\frac{17}{81})^\frac{1}{4}= 23\frac{2}{3}+Δy

Now,dy is approximately equal to ∆y and is given by,
dy=(dydx)(\frac{dy}{dx}) Δx= 14(x)34\frac{1}{4(x)^{\frac{3}{4}}}(Δx) (as y=x14y=x^\frac{1}{4})
= 14(1681)34(181)\frac {1}{4(\frac{16}{81})^\frac{3}{4}}(\frac{1}{81})= 274×8\frac{27}{4\times8}x 181=132×3=196=0.010\frac{1}{81}=\frac{1}{32\times3}=\frac{1}{96}=0.010
Hence, the approximate value of 178114\frac{17}{81}^\frac{1}{4} is 23\frac{2}{3}+0.010=0.667+0.010=0.677.


(b)Consider y=x=15x=\frac{1}{5} . Let x=32 and ∆x=1.

Δy=(x+Δx)^{-\frac{1}{5}}-x^{-\frac{1}{5}}$$=33^{- (\frac{1}{5})} -(32)^{- (\frac{1}{5})} \- (\frac{1}{2})
(33)(15)(33)^{- (\frac{1}{5})}=12\frac{1}{2}+Δy
Now,dy is approximately equal to ∆y and is given by,
dy=(dydx)dy=(\frac{dy}{dx})(Δx)=15(x)(65)(Δx)=- \frac{1}{5 (x) ^{ (\frac{6}{5})}} (Δx) ( as y=15y=\frac{1}{5})
=-15(2)6(1)=1320=0.003\frac{1}{5(2)^6}(1)=-\frac{1}{320}=-0.003

Hence, the approximate value of(33)15 (33)^{\frac{-1}{5}} is 12\frac{1}{2}+(-0.003)
=0.5−0.003=0.497.