Question
Question: Using determinant, show that the points \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\]...
Using determinant, show that the points A(a,b+c), B(b,c+a) and C(c,a+b) are collinear.
Solution
First, we will use the property that the three points (x1,y1), (x2,y2) and (x3,y3) are collinear if \left| {\begin{array}{*{20}{c}} 1&{{x_1}}&{{y_1}} \\\ 1&{{x_2}}&{{y_2}} \\\ 1&{{x_3}}&{{y_3}} \end{array}} \right| = 0. Then we will take C2→C2+C3 and use the rule of determinant that if any of the two rows or columns, the determinant is equal to zero to prove the required result.
Complete step-by-step answer:
We are given that the points are A(a,b+c), B(b,c+a) and C(c,a+b).
We are given that the three points (x1,y1), (x2,y2) and (x3,y3) are collinear if \left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\\
1&{{x_2}}&{{y_2}} \\\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0.
So, we have the matrix from the three given point A, B and C, we get
\Rightarrow \left| {\begin{array}{{20}{c}}
1&{a + b + c}&{b + c} \\
1&{b + c + a}&{c + a} \\
1&{c + a + b}&{a + b}
\end{array}} \right| \\
\Rightarrow \left| {\begin{array}{{20}{c}}
1&{a + b + c}&{b + c} \\
1&{a + b + c}&{c + a} \\
1&{a + b + c}&{a + b}
\end{array}} \right| \\