Solveeit Logo

Question

Mathematics Question on Determinants

Using Cofactors of elements of third column,evaluate=[1xyz 1yzx 1zxy]△=\begin{bmatrix}1&x&yz\\\ 1&y&zx\\\ 1&z&xy\end{bmatrix}

Answer

The given determinant is[1xyz 1yzx 1zxy]\begin{bmatrix}1&x&yz\\\ 1&y&zx\\\ 1&z&xy\end{bmatrix}
We have:
M13=[1y\1z]=zyM_{13} =\begin{bmatrix}1&y\\\1&z\end{bmatrix}=z-y
M23=[1x\1z]=zxM_{23} =\begin{bmatrix}1&x\\\1&z\end{bmatrix}=z-x
M33=[1x\1y]=yzM_{33} =\begin{bmatrix}1&x\\\1&y\end{bmatrix}=y-z
A13∴A_{13} = cofactor of a13=(1)1+3M13=(zy)a_{13} = (−1)^{1+3} M_{13} = (z − y)
A23A_{23} = cofactor ofa23=(1)2+3M23=(zx)=(xz) a_{23} = (−1)^{2+3} M_{23} = − (z − x) = (x − z)
A33A_{33} = cofactor of a33a_{33} =(1)3+3M33=(yx)= (−1)^{3+3} M_{33} = (y − x)
We know that ∆ is equal to the sum of the product of the elements of the second row
with their corresponding cofactors.
=a13A13+a23A23+a33A33∴∆=a_{13}A_{13}+a_{23}A_{23}+a_{33}A_{33}
=yz(zy)+zx(xz)+xy(yx)=yz(z-y)+zx(x-z)+xy(y-x)
=yz22y2z+x2zxz2+xy2x2y=yz^22-y^2z+x^2z-xz^2+xy^2-x^2y
=(x2zy2z)+(yz2xz2)+(xy2x2y)=(x^2z-y^2z)+(yz^2-xz^2)+(xy^2-x^2y)
=z(x2y2)+z2(yx)+xy(yx)=z(x^2-y^2)+z^2(y-x)+xy(y-x)
=(xy)[zx+zyz2xy]=(x-y)[zx+zy-z^2-xy]
=(xy)(zx)[z+y]=(x-y)(z-x)[-z+y]
=(xy)(yz)(zx)=(x-y)(y-z)(z-x)
Hence, =(xy)(yz)(zx)∆=(x-y)(y-z)(z-x)