Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Using Binomial Theorem, evaluate (101)4(101)^4

Answer

101101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.
It can be written that, 101=100+1101 = 100 + 1
(101)4=(100+1)4(101)^4 = (100+1)^4
=4C0(100)4+4C1(100)3(1)+4C2(100)2(1)2+4C3(100)(1)3+4C4(1)4^4C_0(100)^4 +^4C_1(100)^3(1)+^4C_2(100)^2(1)^2 + ^4C_3(100)(1)^3 + ^4C_4(1)^4
=(100)4+4(100)3+6(100)2+4(100)+(1)4(100)^4+4(100)^3+6(100)^2+4(100)+(1)^4
=100000000+4000000+60000+400+1100000000+4000000+60000+400+1
=104060401104060401