Solveeit Logo

Question

Question: Use the first principle of differentiation to differentiate \(y = \sqrt {\sin x} \)....

Use the first principle of differentiation to differentiate y=sinxy = \sqrt {\sin x} .

Explanation

Solution

The given question requires us to find the derivative of a function using the first principle of differentiation. The first principle of differentiation helps us evaluate the derivative of a function using limits. Calculating the derivative of a function using the first principle of differentiation may be a tedious task. We may employ identities and tricks to calculate the limits and evaluate the required derivative.

Complete step by step solution:
We have to evaluate the derivative of y=f(x)=sinxy =f(x) = \sqrt {\sin x} using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit f(x) = limh0f(x+h)f(x)hf'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h} .
So, the derivative of the function y=sinxy = \sqrt {\sin x} can be calculated by the first rule of differentiation as:
f(x) = limh0[sin(x+h)sinxh]f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]
Expanding the sine of a compound angle using the compound angle formula for sine as sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, we get,
f(x) = limh0[sinxcosh+cosxsinhsinxh]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]
Multiplying and dividing the rational expression by (sinxcosh+cosxsinh+sinx)\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right), we get,
f(x) = limh0[sinxcosh+cosxsinhsinxh]×(sinxcosh+cosxsinh+sinx)(sinxcosh+cosxsinh+sinx)\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}
Using the algebraic identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), we get,
f(x) = limh0[sinxcosh+cosxsinhsinxh(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Taking the common terms outside the bracket, we get,
f(x) = limh0[sinx(cosh1)+cosxsinhh(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Separating out the denominator, we get,
f(x) = limh0[sinx(cosh1)h+cosxsinhh(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Using the half angle formula for cosine in numerator,
f(x) = limh0[sinx(12sin2h21)h+cosxsinhh(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Cancelling the like terms with opposite signs,
f(x) = limh0[2sinx(sin2h2)h+cosx(sinhh)(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Separating out the limits for each expression, we get,
f(x) = [limh02sinx(sin2h2)h(sinxcosh+cosxsinh+sinx)+limh0cosx(sinhh)(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Using the standard limit result limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1, we get,
f(x) = [limh02sinx(sin2h2)h(sinxcosh+cosxsinh+sinx)+limh0cosx(1)(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Doing some modifications in the first term,
f(x) = [limh02sinx(sin2h2)4h×(h2)2(sinxcosh+cosxsinh+sinx)+limh0cosx(1)(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
f(x) = [limh02sinx×h4(sinxcosh+cosxsinh+sinx)+limh0cosx(1)(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
f(x) = [limh02hsinx4(sinxcosh+cosxsinh+sinx)+limh0cosx(sinxcosh+cosxsinh+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]
Putting in the value of limits, we get,
f(x) = [2(0)sinx4(sinxcos0+cosxsin0+sinx)+cosx(sinxcos0+cosxsin0+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]
Simplifying the expression,
f(x) = [0+cosx(sinx(1)+cosx(0)+sinx)]\Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]
f(x) = cosx2sinx\Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}
Therefore, the derivative of the function y=sinxy = \sqrt {\sin x} is f(x) = cosx2sinxf'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}.

Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of xn{x^n} is nxn1n{x^{n - 1}} .
So, going by the chain rule of differentiation, the derivative of y=sinxy = \sqrt {\sin x} is dydx=12sinx×(cosx)\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right). So, the derivative of the given function is f(x) = cosx2sinxf'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }} .