Solveeit Logo

Question

Question: Use integration by parts to derive the reduction formula \[\int {{{\cos }^n}\left( x \right)dx = \df...

Use integration by parts to derive the reduction formula cosn(x)dx=1nsinxcosn1(x)+n1ncosn2(x)dx\int {{{\cos }^n}\left( x \right)dx = \dfrac{1}{n}\sin x{{\cos }^{n - 1}}\left( x \right) + \dfrac{{n - 1}}{n}\int {{{\cos }^{n - 2}}\left( x \right)dx} } where nn is a positive integer.
And use the previous reduction formula to evaluate cos3x dx\int {{{\cos }^3}x{\text{ }}dx}

Explanation

Solution

To solve this question, we will first split cosnx{\cos ^n}x in to two parts as cosn1x{\cos ^{n - 1}}x and cosx\cos x .Then we will apply the formula of integration by parts i.e., (uv)dx=uvdx(dudxvdx) dx\int {\left( {uv} \right)dx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } {\text{ }}dx and derive the given result. After that we will substitute n=3n = 3 in the resultant formula to get the value of cos3x dx\int {{{\cos }^3}x{\text{ }}dx}

Complete answer:
Let us assume, I=cosnx dx (A)I = \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} - - - \left( A \right)
Now let’s split cosnx{\cos ^n}x in to two parts as cosn1x{\cos ^{n - 1}}x and cosx\cos x
i.e., cosnx=cosn1xcosx{\cos ^n}x = {\cos ^{n - 1}}x \cdot \cos x
Therefore, we get
I=cosn1xcosx dx (i)I = \int {{{\cos }^{n - 1}}x \cdot \cos x{\text{ }}dx} {\text{ }} - - - \left( i \right)
Now we know that
(uv)dx=uvdx(dudxvdx) dx\int {\left( {uv} \right)dx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } {\text{ }}dx
So, on applying integration by parts in equation (i)\left( i \right) we get
I=cosn1xcosx dx(ddx(cosn1x)cosxdx) dx (ii)I = {\cos ^{n - 1}}x\int {\cos x{\text{ }}dx} - \int {\left( {\dfrac{d}{{dx}}\left( {{{\cos }^{n - 1}}x} \right)\int {\cos xdx} } \right)} {\text{ }}dx{\text{ }} - - - \left( {ii} \right)
Now we know that
cosx dx=sinx\int {\cos x{\text{ }}dx = \sin x}
ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
Therefore, from equation (ii)\left( {ii} \right) we have
I=cosn1x(sinx)(n1)cosn2x(sinx)sinx dxI = {\cos ^{n - 1}}x\left( {\sin x} \right) - \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( { - \sin x} \right)\sin x{\text{ }}dx}
Taking negative sign out from the integral, we get
I=cosn1x(sinx)+(n1)cosn2x(sinx)sinx dxI = {\cos ^{n - 1}}x\left( {\sin x} \right) + \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx}
(n1)\left( {n - 1} \right) is a constant term, so we can take it out from the integral
Therefore, we get
I=cosn1x(sinx)+(n1)cosn2x(sinx)sinx dxI = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx}
I=cosn1x(sinx)+(n1)cosn2x(sin2x) dxI = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {{{\sin }^2}x} \right){\text{ }}dx}
We know that
sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x
Therefore, we have
I=cosn1x(sinx)+(n1)cosn2x(1cos2x) dxI = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {1 - {{\cos }^2}x} \right){\text{ }}dx}
On simplifying the integral part, we get
I=cosn1x(sinx)+(n1)cosn2xcosndxI = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x - {{\cos }^n}{\text{x }}dx}
I=cosn1x(sinx)+(n1)cosn2x dx(n1)cosnx dx\Rightarrow I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx}
Now from equation (A)\left( A \right) we have I=cosnx dxI = \int {{{\cos }^n}x{\text{ }}dx}
Therefore, on substituting the value, we get
cosnx dx=cosn1x(sinx)+(n1)cosn2x dx(n1)cosnx dx\Rightarrow \int {{{\cos }^n}x{\text{ }}dx} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx}
On combining the cosnx dx\int {{{\cos }^n}x{\text{ }}dx} terms, we get
(1+n1)cosnx dx =cosn1x(sinx)+(n1)cosn2x dx\Rightarrow \left( {1 + n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx}
ncosnx dx =cosn1x(sinx)+(n1)cosn2x dx\Rightarrow n\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx}
On dividing the above equation by nn we get
cosnx dx =cosn1x(sinx)+(n1)cosn2x dxn\Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{{{{\cos }^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} }}{n}
cosnx dx =1nsinxcosn1x+n1ncosn2x dx\Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{1}{n}\sin x{\cos ^{n - 1}}x + \dfrac{{n - 1}}{n}\int {{{\cos }^{n - 2}}x{\text{ }}dx}
Hence, we get the required result.
Hence, proved
Now we have to evaluate cos3x dx\int {{{\cos }^3}x{\text{ }}dx}
So, on substituting n=3n = 3 we get
cos3x dx =13sinxcos31x+313cos32x dx\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{1}{3}\sin x{\cos ^{3 - 1}}x + \dfrac{{3 - 1}}{3}\int {{{\cos }^{3 - 2}}x{\text{ }}dx}
On simplifying, we get
cos3x dx =sinxcos2x3+23cosx dx\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\int {\cos x{\text{ }}dx}
We know that
cosx dx=sinx\int {\cos x{\text{ }}dx = \sin x}
Therefore, we get
cos3x dx =sinxcos2x3+23sinx\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\sin x
We know that
cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x
Therefore, we have
cos3x dx =sinx(1sin2x)3+23sinx\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x\left( {1 - {{\sin }^2}x} \right)}}{3} + \dfrac{2}{3}\sin x
cos3x dx =sinxsin3x3+23sinx\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x}}{3} + \dfrac{2}{3}\sin x
On taking L.C.M we get
cos3x dx =sinxsin3x+2sinx3\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x + 2\sin x}}{3}
cos3x dx =3sinxsin3x3\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{3\sin x - {{\sin }^3}x}}{3}
On dividing by 33 we get
cos3x dx =sinxsin3x3\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3}
As it is an indefinite integral, so add constant of integration.
Hence, we get the final result as
cos3x dx =sinxsin3x3+c\Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3} + c

Note: While solving this question, keep track of each step as the solution involves complex calculations, so there is a high probability of error. Also make sure you know the differentiation and integration of cosx\cos x as students get confused between the two. The differentiation of cosx\cos x is sinx - \sin x while the integration of cosx\cos x is sinx\sin x . So be aware of each and every formula as one mistake can lead you to the wrong answer.