Solveeit Logo

Question

Question: Use Euclid division Lemma to show that the cube of any positive integer is either of the form \(9m,9...

Use Euclid division Lemma to show that the cube of any positive integer is either of the form 9m,9m+19m,9m + 1 or 9m+89m + 8 for some integer m.

Explanation

Solution

Hint: Any number can be written in the form of 3q3qor of 3q+13q + 1or 3q+23q + 2. Find the cube of all of them making different cases for each.

Let xxbe any positive integer. Then xxwill be either of the form of 3q3qor of 3q+13q + 1or 3q+23q + 2. So, we have the following cases:
Case 1: When x=3qx = 3q
In this case, we know:
x3=(3q)3=27q3, x3=9(3q3)=9m, where m=3q3   \Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\\ \Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\\
Case 2: When x=3q+1x = 3q + 1
In this case we have:

x3=(3q+1)3, x3=27q3+27q2+9q+1, x3=9q(3q2+3q+1)+1, x3=9m+1, where m=q(3q2+3q+1)  \Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\\ \Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\\ \Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\\ \Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\\

Case 3: When x=3q+2x = 3q + 2
In this case we have:

x3=(3q+2)3, x3=27q3+54q2+36q+8, x3=9q(3q2+6q+4)+8, x3=9m+8, where m=q(3q2+6q+4)  \Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\\ \Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\\ \Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\\ \Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\\

Thus, x3{x^3}can be either of the form of 9m,9m+19m,9m + 1 or 9m+89m + 8.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either 9m,9m+19m,9m + 1 or 9m+89m + 8. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.