Question
Question: Use elementary row transformation, find the inverse of the matrix \(A = \left[ {\begin{array}{*{20}{...
Use elementary row transformation, find the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ 2&5&7 \\\ { - 2}&{ - 4}&{ - 5} \end{array}} \right]
Solution
If we have to find A−1 using row operations, write A=IA and apply a sequence of row operations on A=IA till we get, I=BA.Then, the matrix B will be the inverse of A. Here I = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right] is the identity matrix.
Complete step-by-step answer:
Write A=IA, i.e.,
\left[ {\begin{array}{*{20}{c}}
1&2&3 \\\
2&5&7 \\\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right]A
Applying R2→R2−2R1,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\\
0&1&1 \\\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
{ - 2}&1&0 \\\
0&0&1
\end{array}} \right]A
Applying R3→R3+2R1,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\\
0&1&1 \\\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
{ - 2}&1&0 \\\
2&0&1
\end{array}} \right]A
Applying R1→R1−2R2,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&1 \\\
0&1&1 \\\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 2}&0 \\\
{ - 2}&1&0 \\\
2&0&1
\end{array}} \right]A
Applying R1→R1−R3,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&1 \\\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\\
{ - 2}&1&0 \\\
2&0&1
\end{array}} \right]A
Applying R2→R2−R3,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\\
{ - 4}&1&{ - 1} \\\
2&0&1
\end{array}} \right]A
Since it is of the form I=BA, where matrix B will be the inverse of A.
\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\\
{ - 4}&1&{ - 1} \\\
2&0&1
\end{array}} \right]
Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If B is the inverse of matrix A, then A is also the inverse of matrix B.