Solveeit Logo

Question

Question: Use elementary row transformation, find the inverse of the matrix \(A = \left[ {\begin{array}{*{20}{...

Use elementary row transformation, find the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ 2&5&7 \\\ { - 2}&{ - 4}&{ - 5} \end{array}} \right]

Explanation

Solution

If we have to find A1{A^{ - 1}} using row operations, write A=IAA = IA and apply a sequence of row operations on A=IAA = IA till we get, I=BAI = BA.Then, the matrix BB will be the inverse of AA. Here I = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right] is the identity matrix.

Complete step-by-step answer:
Write A=IAA = IA, i.e.,
\left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ 2&5&7 \\\ { - 2}&{ - 4}&{ - 5} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right]A
Applying R2R22R1{R_2} \to {R_2} - 2{R_1},
\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ 0&1&1 \\\ { - 2}&{ - 4}&{ - 5} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ { - 2}&1&0 \\\ 0&0&1 \end{array}} \right]A
Applying R3R3+2R1{R_3} \to {R_3} + 2{R_1},
\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ 0&1&1 \\\ 0&0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ { - 2}&1&0 \\\ 2&0&1 \end{array}} \right]A
Applying R1R12R2{R_1} \to {R_1} - 2{R_2},
\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&1 \\\ 0&1&1 \\\ 0&0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 5&{ - 2}&0 \\\ { - 2}&1&0 \\\ 2&0&1 \end{array}} \right]A
Applying R1R1R3{R_1} \to {R_1} - {R_3},
\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&1 \\\ 0&0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 1} \\\ { - 2}&1&0 \\\ 2&0&1 \end{array}} \right]A
Applying R2R2R3{R_2} \to {R_2} - {R_3},
\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 1} \\\ { - 4}&1&{ - 1} \\\ 2&0&1 \end{array}} \right]A
Since it is of the form I=BAI = BA, where matrix BB will be the inverse of AA.
\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 1} \\\ { - 4}&1&{ - 1} \\\ 2&0&1 \end{array}} \right]

Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If BB is the inverse of matrix AA, then AA is also the inverse of matrix BB.