Question
Question: Find a unit vector parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarr...
Find a unit vector parallel to the vector 2a−b+3c

−222i^−223j^+223k^
223i^−223j^+222k^
−223i^+223j^+222k^
−222i^+223j^+223k^
223i^−223j^+222k^
Solution
To find a unit vector parallel to the vector 2a−b+3c, we follow these steps:
-
Calculate the resultant vector:
Let V=2a−b+3c.
Given:
a=i^+j^+k^
b=2i^−j^+3k^
c=i^−2j^+k^First, calculate the scalar multiples:
2a=2(i^+j^+k^)=2i^+2j^+2k^
3c=3(i^−2j^+k^)=3i^−6j^+3k^Now, substitute these into the expression for V:
V=(2i^+2j^+2k^)−(2i^−j^+3k^)+(3i^−6j^+3k^)Combine the components:
For i^: (2−2+3)i^=3i^
For j^: (2−(−1)−6)j^=(2+1−6)j^=−3j^
For k^: (2−3+3)k^=2k^So, the resultant vector is V=3i^−3j^+2k^.
-
Calculate the magnitude of the resultant vector:
The magnitude of V is ∣V∣=(3)2+(−3)2+(2)2.
∣V∣=9+9+4
∣V∣=22 -
Find the unit vector:
A unit vector parallel to V is given by V^=∣V∣V.
V^=223i^−3j^+2k^
V^=223i^−223j^+222k^