Solveeit Logo

Question

Question: Consider the following in respect of the vectors $\overrightarrow{a} = (1,0,0)$ and $\overrightarrow...

Consider the following in respect of the vectors a=(1,0,0)\overrightarrow{a} = (1,0,0) and b=(1,1,1)\overrightarrow{b} = (1, 1, 1):

  1. The projection of a\overrightarrow{a} on b\overrightarrow{b} is 13\frac{1}{\sqrt{3}}.

  2. The angle between the vectors is π3\frac{\pi}{3}.

Which of the statements given above is/are correct?

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Answer

1 only

Explanation

Solution

Statement 1: The projection of a\overrightarrow{a} on b\overrightarrow{b} is 13\frac{1}{\sqrt{3}}.

The projection of vector a\overrightarrow{a} on vector b\overrightarrow{b} is given by the formula: Projba=abbProj_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\overrightarrow{b}||}

First, calculate the dot product ab\overrightarrow{a} \cdot \overrightarrow{b}: ab=(1)(1)+(0)(1)+(0)(1)=1+0+0=1\overrightarrow{a} \cdot \overrightarrow{b} = (1)(1) + (0)(1) + (0)(1) = 1 + 0 + 0 = 1

Next, calculate the magnitude of vector b\overrightarrow{b}, b||\overrightarrow{b}||: b=12+12+12=1+1+1=3||\overrightarrow{b}|| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}

Now, substitute these values into the projection formula: Projba=13Proj_{\overrightarrow{b}} \overrightarrow{a} = \frac{1}{\sqrt{3}}

Thus, Statement 1 is correct.

Statement 2: The angle between the vectors is π3\frac{\pi}{3}.

The cosine of the angle θ\theta between two vectors a\overrightarrow{a} and b\overrightarrow{b} is given by the formula: cosθ=abab\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\overrightarrow{a}|| \cdot ||\overrightarrow{b}||}

We already calculated ab=1\overrightarrow{a} \cdot \overrightarrow{b} = 1 and b=3||\overrightarrow{b}|| = \sqrt{3}.

Next, calculate the magnitude of vector a\overrightarrow{a}, a||\overrightarrow{a}||: a=12+02+02=1=1||\overrightarrow{a}|| = \sqrt{1^2 + 0^2 + 0^2} = \sqrt{1} = 1

Now, substitute these values into the formula for cosθ\cos \theta: cosθ=1(1)(3)=13\cos \theta = \frac{1}{(1)(\sqrt{3})} = \frac{1}{\sqrt{3}}

To check if the angle is π3\frac{\pi}{3}, we compare cosθ\cos \theta with cos(π3)\cos\left(\frac{\pi}{3}\right): cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}

Since 1312\frac{1}{\sqrt{3}} \neq \frac{1}{2} (as 32\sqrt{3} \neq 2), the angle between the vectors is not π3\frac{\pi}{3}. The actual angle is θ=arccos(13)\theta = \arccos\left(\frac{1}{\sqrt{3}}\right).

Thus, Statement 2 is incorrect.

Conclusion: Statement 1 is correct, and Statement 2 is incorrect. Therefore, only Statement 1 is correct.