Solveeit Logo

Question

Question: Unit vectors \(\vec a\) and \(\vec b\) are perpendicular and a unit vector \(\vec c\) is inclined at...

Unit vectors a\vec a and b\vec b are perpendicular and a unit vector c\vec c is inclined at an angle θ\theta to both a\vec a and b\vec b. If c=αa+βb+γ(a×b)\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right), then
A) α=β\alpha = \beta
B) γ2=12α2{\gamma ^2} = 1 - 2{\alpha ^2}
C) γ2=cos2θ{\gamma ^2} = - \cos 2\theta
D) β2=1+cos2θ2{\beta ^2} = \dfrac{{1 + \cos 2\theta }}{2}

Explanation

Solution

We will first find the dot products of a,b\vec a,\vec b and c\vec cwith each other. Then take the c=αa+βb+γ(a×b)\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right) and take its dot product with a,b\vec a,\vec b to reach to the values of α\alpha and β\beta . Then use their values in c\vec c and do some modifications to get the value of γ\gamma .

Complete step-by-step answer:
We know that ab=abcosθ\vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos \theta , where θ\theta is the angle between a\vec a and b\vec b.
Since, a\vec a, b\vec b and c\vec c are unit vectors.
The dot product of a\vec a with a\vec a is,
aa=aacos0\Rightarrow \vec a \cdot \vec a = \left| {\vec a} \right| \cdot \left| {\vec a} \right| \cdot \cos 0
Since, a\vec a is unit vectors.
aa=a2=1\Rightarrow \vec a \cdot \vec a = {\left| {\vec a} \right|^2} = 1...........….. (1)
The dot product of b\vec b with b\vec b is,
bb=bbcos0\Rightarrow \vec b \cdot \vec b = \left| {\vec b} \right| \cdot \left| {\vec b} \right| \cdot \cos 0
Since, b\vec b is unit vectors.
bb=b2=1\Rightarrow \vec b \cdot \vec b = {\left| {\vec b} \right|^2} = 1..............….. (2)
Now, the dot product of a\vec a with c\vec c is,
ac=accosθ\Rightarrow \vec a \cdot \vec c = \left| {\vec a} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta
Since, a\vec a and c\vec c are unit vectors.
ac=cosθ\Rightarrow \vec a \cdot \vec c = \cos \theta.................….. (3)
Now, the dot product of b\vec b with c\vec c is,
bc=bccosθ\Rightarrow \vec b \cdot \vec c = \left| {\vec b} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta
Since, b\vec b and c\vec c are unit vectors.
bc=cosθ\Rightarrow \vec b \cdot \vec c = \cos \theta..............….. (4)
Since, a\vec a and b\vec b are parallel to each other.
ab=abcos90\Rightarrow \vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos 90
Substitute the values,
ab=0\Rightarrow \vec a \cdot \vec b = 0............….. (5)
We also know that if we have two vectors then the resultant of their cross product is always perpendicular to both the vectors.
So, a\vec a is perpendicular to (a×b)\left( {\vec a \times \vec b} \right),
a(a×b)=0\Rightarrow \vec a \cdot \left( {\vec a \times \vec b} \right) = 0...........….. (6)
So, b\vec b is perpendicular to (a×b)\left( {\vec a \times \vec b} \right) as well,
b(a×b)=0\Rightarrow \vec b \cdot \left( {\vec a \times \vec b} \right) = 0.........….. (7)
Now, we have c=αa+βb+γ(a×b)\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right). So,
\Rightarrow \vec b \cdot \vec c = \vec b \cdot \left\\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\\}
This can be written as,
\Rightarrow \vec b \cdot \vec c = \alpha \left( {\vec b \cdot \vec a} \right) + \beta \left( {\vec b \cdot \vec b} \right) + \gamma \left\\{ {\vec b \cdot \left( {\vec a \times \vec b} \right)} \right\\}
Substitute the values from equation (2), (4), (5), and (7)
cosθ=β\Rightarrow \cos \theta = \beta..............….. (8)
Now, find the dot product of a\vec a and c\vec c.
\Rightarrow \vec a \cdot \vec c = \vec a \cdot \left\\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\\}
This can be written as,
\Rightarrow \vec a \cdot \vec c = \alpha \left( {\vec a \cdot \vec a} \right) + \beta \left( {\vec a \cdot \vec b} \right) + \gamma \left\\{ {\vec a \cdot \left( {\vec a \times \vec b} \right)} \right\\}
Substitute the values from equation (1), (4), (5) and (7)
cosθ=α\Rightarrow \cos \theta = \alpha............….. (9)
Compare equation (8) and (9),
α=β\therefore \alpha = \beta
Substitute the value in c\vec c,
c=αa+αb+γ(a×b)\Rightarrow \vec c = \alpha \vec a + \alpha \vec b + \gamma \left( {\vec a \times \vec b} \right)
Now, the dot product of c\vec c with c\vec c,
\Rightarrow \vec c \cdot \vec c = {\left( {\alpha \vec a} \right)^2} + {\left( {\alpha \vec b} \right)^2} + {\left\\{ {\gamma \left( {\vec a \times \vec b} \right)} \right\\}^2}
Square the terms,
cc=α2(aa)+α2(bb)+γ2(a×b)2\Rightarrow \vec c \cdot \vec c = {\alpha ^2}\left( {\vec a \cdot \vec a} \right) + {\alpha ^2}\left( {\vec b \cdot \vec b} \right) + {\gamma ^2}{\left( {\vec a \times \vec b} \right)^2}
Substitute the values as all are unit vectors,
1=α2+α2+γ2\Rightarrow 1 = {\alpha ^2} + {\alpha ^2} + {\gamma ^2}
Add the terms on the right side,
1=2α2+γ2\Rightarrow 1 = 2{\alpha ^2} + {\gamma ^2}
Move 2α22{\alpha ^2} on the other side,
γ2=12α2\therefore {\gamma ^2} = 1 - 2{\alpha ^2}.........….. (10)
Now, substitute the value of α\alpha from equation (9),
γ2=12cos2θ\Rightarrow {\gamma ^2} = 1 - 2{\cos ^2}\theta
Take -1 common from right side,
γ2=(2cos2θ1)\Rightarrow {\gamma ^2} = - \left( {2{{\cos }^2}\theta - 1} \right)
Substitute the value cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1,
γ2=cos2θ\therefore {\gamma ^2} = - \cos 2\theta ..........….. (11)
Compare equation (10) and (11),
12α2=cos2θ\Rightarrow 1 - 2{\alpha ^2} = - \cos 2\theta
Substitute the value β\beta in place of α\alpha ,
12β2=cos2θ\Rightarrow 1 - 2{\beta ^2} = - \cos 2\theta
Simplify the terms,
2β2=1+cos2θ\Rightarrow 2{\beta ^2} = 1 + \cos 2\theta
Divide both sides by 2,
β2=1+cos2θ2\therefore {\beta ^2} = \dfrac{{1 + \cos 2\theta }}{2}

Hence, option (a), (b), (c) and (d) all are correct.

Note: A vector is an object that has both magnitude and direction. The students must know the difference between the dot product and cross product. The dot product results in a scalar quantity whereas the cross-product results in a vector only.