Solveeit Logo

Question

Question: Unit vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are perpendicular, and unit vector \(...

Unit vectors a\overrightarrow{a} and b\overrightarrow{b} are perpendicular, and unit vector c\overrightarrow{c} is inclined at an angle θ\theta to both a\overrightarrow{a} and b\overrightarrow{b} . If c=αa+βb+γ(a×b)\overrightarrow{c}=\alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) , then
(a). α=β\alpha =\beta
(b). γ2=12α2{{\gamma }^{2}}=1-2{{\alpha }^{2}}
(c). γ2=cos2θ{{\gamma }^{2}}=-\cos 2\theta
(d). β2=1+cos2θ2{{\beta }^{2}}=\dfrac{1+\cos 2\theta }{2}

Explanation

Solution

Hint:- Use the formula that cosϕ=a.bab\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} , where ϕ\phi is the angle between a\overrightarrow{a} and b\overrightarrow{b} . Also, the value of a|\overrightarrow{a}| is 1, provided a\overrightarrow{a} is a unit vector.

Complete step-by-step solution -
It is given in the question that a\overrightarrow{a} and b\overrightarrow{b} are perpendicular, and we know that the dot product of perpendicular vectors is zero.
a.b=0.........(i)\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)
Now, as the angle between a\overrightarrow{a} and c\overrightarrow{c} is θ\theta and the angle between b\overrightarrow{b} and c\overrightarrow{c} is also θ\theta . So, the cosine of both the angles would be the same. We also know the cosϕ=a.bab\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} , where ϕ\phi is the angle between a\overrightarrow{a} and b\overrightarrow{b} .
a.c=b.c\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}
a.(αa+βb+γ(a×b))=b.(αa+βb+γ(a×b))\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)
αa.a+βa.b+γa.(a×b)=αa.b+βb.b+γb.(a×b)\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)
Now we will substitute the required value from equation (i). On doing so, we get

αa.a+0+γa.(a×b)=0+βb.b+γb.(a×b)\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)
We also know that a\overrightarrow{a} and b\overrightarrow{b} is always perpendicular to a×b\overrightarrow{a}\times \overrightarrow{b} and the dot product of perpendicular vectors is zero.
αa.a+0=βb.b\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}
Now we know that a.a=a2\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}} . So, we get
αa2=βb2\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}
Also, it is given that a\overrightarrow{a} and b\overrightarrow{b} are unit vectors. Therefore, the magnitude of a\overrightarrow{a} and b\overrightarrow{b} is equal to 1.
α×1=β×1\alpha \times 1=\beta \times 1
α=β\Rightarrow \alpha =\beta
Therefore, the value of the α\alpha must be equal to the value of β\beta for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).

Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.