Solveeit Logo

Question

Question: Unit vector parallel to the resultant of vectors \(\overrightarrow{A} = 4\widehat{i} - 3\widehat{j}\...

Unit vector parallel to the resultant of vectors A=4i^3j^\overrightarrow{A} = 4\widehat{i} - 3\widehat{j}and B=8i^+8j^\overrightarrow{B} = 8\widehat{i} + 8\widehat{j}will be

A

24i^+5j^13\frac{24\widehat{i} + 5\widehat{j}}{13}

B

12i^+5j^13\frac{12\widehat{i} + 5\widehat{j}}{13}

C

6i^+5j^13\frac{6\widehat{i} + 5\widehat{j}}{13}

D

None of these

Answer

12i^+5j^13\frac{12\widehat{i} + 5\widehat{j}}{13}

Explanation

Solution

Resultant of vectors A\overset{\rightarrow}{A} and B\overset{\rightarrow}{B}

R=A+B=4i^3j^+8i^+8j^\overset{\rightarrow}{R} = \overset{\rightarrow}{A} + \overset{\rightarrow}{B} = 4\widehat{i} - 3\widehat{j} + 8\widehat{i} + 8\widehat{j} =12i^+5j^= 12\widehat{i} + 5\widehat{j}

R^=RR=12i^+5j^(12)2+(5)2=12i^+5j^13\widehat{R} = \frac{\overset{\rightarrow}{R}}{|R|} = \frac{12\widehat{i} + 5\widehat{j}}{\sqrt{(12)^{2} + (5)^{2}}} = \frac{12\widehat{i} + 5\widehat{j}}{13}