Question
Question: If $\int_{e^{2\pi}}^{e^{\frac{49\pi}{3}}} \frac{sin(lnx)}{x} dx$ then the value of $I$ is equal to...
If ∫e2πe349πxsin(lnx)dx then the value of I is equal to

0.50
Solution
To evaluate the integral I=∫e2πe349πxsin(lnx)dx, we use the method of substitution.
1. Substitution:
Let u=lnx.
Differentiating both sides with respect to x:
dxdu=x1
So, du=x1dx.
2. Change of Limits:
When x=e2π:
u1=ln(e2π)=2π
When x=e349π:
u2=ln(e349π)=349π
3. Rewrite the Integral:
Substitute u and du into the integral with the new limits:
I=∫2π349πsin(u)du
4. Integrate:
The integral of sin(u) is −cos(u).
I=[−cos(u)]2π349π
5. Apply the Limits:
I=−cos(349π)−(−cos(2π))
I=−cos(349π)+cos(2π)
6. Evaluate Trigonometric Terms:
We know that cos(2π)=1.
For cos(349π), we can rewrite the angle:
349π=348π+π=16π+3π
Since the cosine function has a period of 2π, cos(2nπ+θ)=cos(θ) for any integer n.
Therefore, cos(16π+3π)=cos(3π).
We know that cos(3π)=21.
7. Calculate the Value of I:
Substitute these values back into the expression for I:
I=−21+1
I=21
8. Round-off to Two Decimal Places:
The numerical value is 21=0.5.
To two decimal places, this is 0.50.