Solveeit Logo

Question

Question: If $\int_{e^{2\pi}}^{e^{\frac{49\pi}{3}}} \frac{sin(lnx)}{x} dx$ then the value of $I$ is equal to...

If e2πe49π3sin(lnx)xdx\int_{e^{2\pi}}^{e^{\frac{49\pi}{3}}} \frac{sin(lnx)}{x} dx then the value of II is equal to

Answer

0.50

Explanation

Solution

To evaluate the integral I=e2πe49π3sin(lnx)xdxI = \int_{e^{2\pi}}^{e^{\frac{49\pi}{3}}} \frac{\sin(\ln x)}{x} dx, we use the method of substitution.

1. Substitution: Let u=lnxu = \ln x.
Differentiating both sides with respect to xx:
dudx=1x\frac{du}{dx} = \frac{1}{x}
So, du=1xdxdu = \frac{1}{x} dx.

2. Change of Limits: When x=e2πx = e^{2\pi}:
u1=ln(e2π)=2πu_1 = \ln(e^{2\pi}) = 2\pi

When x=e49π3x = e^{\frac{49\pi}{3}}:
u2=ln(e49π3)=49π3u_2 = \ln(e^{\frac{49\pi}{3}}) = \frac{49\pi}{3}

3. Rewrite the Integral: Substitute uu and dudu into the integral with the new limits:
I=2π49π3sin(u)duI = \int_{2\pi}^{\frac{49\pi}{3}} \sin(u) du

4. Integrate: The integral of sin(u)\sin(u) is cos(u)-\cos(u).
I=[cos(u)]2π49π3I = [-\cos(u)]_{2\pi}^{\frac{49\pi}{3}}

5. Apply the Limits: I=cos(49π3)(cos(2π))I = -\cos\left(\frac{49\pi}{3}\right) - (-\cos(2\pi))
I=cos(49π3)+cos(2π)I = -\cos\left(\frac{49\pi}{3}\right) + \cos(2\pi)

6. Evaluate Trigonometric Terms: We know that cos(2π)=1\cos(2\pi) = 1.
For cos(49π3)\cos\left(\frac{49\pi}{3}\right), we can rewrite the angle:
49π3=48π+π3=16π+π3\frac{49\pi}{3} = \frac{48\pi + \pi}{3} = 16\pi + \frac{\pi}{3}
Since the cosine function has a period of 2π2\pi, cos(2nπ+θ)=cos(θ)\cos(2n\pi + \theta) = \cos(\theta) for any integer nn.
Therefore, cos(16π+π3)=cos(π3)\cos\left(16\pi + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right).
We know that cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.

7. Calculate the Value of I: Substitute these values back into the expression for II:
I=12+1I = -\frac{1}{2} + 1
I=12I = \frac{1}{2}

8. Round-off to Two Decimal Places: The numerical value is 12=0.5\frac{1}{2} = 0.5.
To two decimal places, this is 0.500.50.