Question
Question: \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim}\) [1 + (cos x)<sup>cos x</sup>]<sup>2</sup> is equ...
x→2π−Lim [1 + (cos x)cos x]2 is equal to
A
Does not exist
B
1
C
e
D
4
Answer
4
Explanation
Solution
x→2π−Lim [1 + (cos x)cosx]2
y = x→2π−Lim (cos x)cos x
log(y) = x→2π−Lim (cos x) log cos x
log (y) = sec(x)log(cosx) (∞/∞) L'hospital
log(y) = x→2π−Lim cosx1× – secxtanxsinx
= x→2π−Lim – cos x = 0
y = e0 = 1
Now limit is (1 + 1)2 = 22 = 4