Solveeit Logo

Question

Question: \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim}\) [1 + (cos x)<sup>cos x</sup>]<sup>2</sup> is equ...

Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} [1 + (cos x)cos x]2 is equal to

A

Does not exist

B

1

C

e

D

4

Answer

4

Explanation

Solution

Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} [1 + (cos x)cosx]2

y = Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} (cos x)cos x

log(y) = Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} (cos x) log cos x

log (y) = log(cosx)sec(x)\frac{\log(\cos x)}{\sec(x)} (∞/∞) L'hospital

log(y) = Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} 1cosx\frac{1}{\cos x}× – sinxsecxtanx\frac{\sin x}{\sec x\tan x}

= Limxπ2\underset{x \rightarrow \frac{\pi}{2}^{-}}{Lim} – cos x = 0

y = e0 = 1

Now limit is (1 + 1)2 = 22 = 4