Solveeit Logo

Question

Question: \({\underset{n \rightarrow \infty}{Lim}}^{n}C_{x}\left( \frac{m}{n} \right)^{x}\left( 1 - \frac{m}{n...

LimnnCx(mn)x(1mn)nx{\underset{n \rightarrow \infty}{Lim}}^{n}C_{x}\left( \frac{m}{n} \right)^{x}\left( 1 - \frac{m}{n} \right)^{n - x} equals to –

A

mxx!.em\frac{m^{x}}{x!}.e^{- m}

B

mxx!.em\frac{m^{x}}{x!}.e^{m}

C

e0

D

0

Answer

mxx!.em\frac{m^{x}}{x!}.e^{- m}

Explanation

Solution

Ltnnxnxmxnx×(1mn)n(1mn)x\underset{n \rightarrow \infty}{Lt}\frac{\begin{matrix} n \end{matrix}}{\begin{matrix} x \end{matrix}\begin{matrix} n - x \end{matrix}}\frac{m^{x}}{n^{x}} \times \frac{\left( 1 - \frac{m}{n} \right)^{n}}{\left( 1 - \frac{m}{n} \right)^{x}}

= mxxLtn(1mn)n\frac{m^{x}}{\begin{matrix} x \end{matrix}}\underset{n \rightarrow \infty}{Lt}\left( 1 - \frac{m}{n} \right)^{n} Ltnnnx(1mn)xnx\underset{n \rightarrow \infty}{Lt}\frac{\begin{matrix} n \end{matrix}}{\begin{matrix} n - x \end{matrix}}\frac{\left( 1 - \frac{m}{n} \right)^{- x}}{n^{x}}

= Ltnnnxnx\underset{n \rightarrow \infty}{Lt}\frac{\begin{matrix} n \end{matrix}}{n^{x}\begin{matrix} n - x \end{matrix}} Ltn(1mn)x\underset{n \rightarrow \infty}{Lt}\left( 1 - \frac{m}{n} \right)^{- x}

= emmxxLtnnnxnx\frac{e^{- m}m^{x}}{\begin{matrix} x \end{matrix}}\underset{n \rightarrow \infty}{Lt}\frac{\begin{matrix} n \end{matrix}}{\begin{matrix} n - x \end{matrix}n^{x}}