Solveeit Logo

Question

Question: \(\underset{n \rightarrow \infty}{Lim}\)![](https://cdn.pureessence.tech/canvas_46.png?top_left_x=14...

Limn\underset{n \rightarrow \infty}{Lim}r38r3+8\frac{r^{3} - 8}{r^{3} + 8} is equal to

A

2/7

B

3/7

C

7/2

D

7/3

Answer

2/7

Explanation

Solution

Limn\underset{n \rightarrow \infty}{Lim} r=3n\prod _ { r = 3 } ^ { n } r38r3+8\frac{r^{3} - 8}{r^{3} + 8} = (33833+8)\left( \frac{3^{3} - 8}{3^{3} + 8} \right) (43843+8)\left( \frac{4^{3} - 8}{4^{3} + 8} \right)........(n38n3+8)\left( \frac{n^{3} - 8}{n^{3} + 8} \right)

= Limn\underset{n \rightarrow \infty}{Lim} [(32)(32+22+3.2)(3+2)(32+223.2)]\left\lbrack \frac{(3 - 2)(3^{2} + 2^{2} + 3.2)}{(3 + 2)(3^{2} + 2^{2} - 3.2)} \right\rbrack

[(42)(42+22+4.2)(4+2)(42+224.2)]\left\lbrack \frac{(4 - 2)(4^{2} + 2^{2} + 4.2)}{(4 + 2)(4^{2} + 2^{2} - 4.2)} \right\rbrack.........[(n2)(n2+22+n.2)(n+2)(n2+22n.2)]\left\lbrack \frac{(n - 2)(n^{2} + 2^{2} + n.2)}{(n + 2)(n^{2} + 2^{2} - n.2)} \right\rbrack

= Limn\underset{n \rightarrow \infty}{Lim} [(32)(42).......(n2)(3+2)(4+2).......n+2]\left\lbrack \frac{(3 - 2)(4 - 2).......(n - 2)}{(3 + 2)(4 + 2).......n + 2} \right\rbrack

[(32+22+3.2)(42+22+4.2)......(n2+22+n.2)(32+223.2)(42+224.2).....(n2+22n.2)]\left\lbrack \frac{(3^{2} + 2^{2} + 3.2)(4^{2} + 2^{2} + 4.2)......(n^{2} + 2^{2} + n.2)}{(3^{2} + 2^{2} - 3.2)(4^{2} + 2^{2} - 4.2).....(n^{2} + 2^{2} - n.2)} \right\rbrack

= [1.2.3.4.5.6........5.6.7.8.....]\left\lbrack \frac{1.2.3.4.5.6........}{5.6.7.8.....} \right\rbrack [19.28.39.52.63..........7.12.19.28.39.52..........]\left\lbrack \frac{19.28.39.52.63..........}{7.12.19.28.39.52..........} \right\rbrack

= 1.2.3.47.12\frac{1.2.3.4}{7.12}= 2/7