Solveeit Logo

Question

Question: \[\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{1}}{\mathbf{\lim}}\mathbf{(1}\mathbf{-}\mathbf{x)}...

limx1(1x)tan(πx2)=\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{1}}{\mathbf{\lim}}\mathbf{(1}\mathbf{-}\mathbf{x)}\mathbf{\tan}\left( \frac{\mathbf{\pi x}}{\mathbf{2}} \right)\mathbf{=}

A

π2\frac{\pi}{2}

B

π\pi

C

2π\frac{2}{\pi}

D

0

Answer

2π\frac{2}{\pi}

Explanation

Solution

limx1(1x)tan(πx2)\lim_{x \rightarrow 1}(1 - x)\tan\left( \frac{\pi x}{2} \right), Put 1x=y1 - x = y \Rightarrow as x1,y0x \rightarrow 1,y \rightarrow 0

Thus limy0y\lim_{y \rightarrow 0}y tan π(1y)2=limy02π.(πy2)tan(πy2)\frac{\pi(1 - y)}{2} = \lim_{y \rightarrow 0}\frac{2}{\pi}.\frac{\left( \frac{\pi y}{2} \right)}{\tan\left( \frac{\pi y}{2} \right)} =2π×1=2π= \frac{2}{\pi} \times 1 = \frac{2}{\pi}.