Solveeit Logo

Question

Question: \[\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\mathbf{(1}\mathbf{-}\math...

limx0(1cos2x)sin5xx2sin3x=\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\mathbf{(1}\mathbf{-}\mathbf{\cos}\mathbf{2}\mathbf{x)}\mathbf{\sin}\mathbf{5}\mathbf{x}}{\mathbf{x}^{\mathbf{2}}\mathbf{\sin}\mathbf{3}\mathbf{x}}\mathbf{=}

A

103\frac{10}{3}

B

310\frac{3}{10}

C

65\frac{6}{5}

D

56\frac{5}{6}

Answer

103\frac{10}{3}

Explanation

Solution

limx02sin2xsin5x3x5xx2sin3x3x5x\lim_{x \rightarrow 0}\frac{2\sin^{2}x\sin 5x3x5x}{x^{2}\sin 3x3x5x}

= limx02sin2xx2.3xsin3x.sin5x5x.5x3x\lim_{x \rightarrow 0}\frac{2\sin^{2}x}{x^{2}}.\frac{3x}{\sin 3x}.\frac{\sin 5x}{5x}.\frac{5x}{3x} = 2.53=1032.\frac{5}{3} = \frac{10}{3}.