Solveeit Logo

Question

Question: \[\underset{\mathbf{h \rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\sqrt{\mathbf{x +}\mathbf{h}}\math...

limh0x+hxh=\underset{\mathbf{h \rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\sqrt{\mathbf{x +}\mathbf{h}}\mathbf{-}\sqrt{\mathbf{x}}}{\mathbf{h}}\mathbf{=}

A

1/2x1/2\sqrt{x}

B

1/2h1/2\sqrt{h}

C

Zero

D

None of these

Answer

1/2x1/2\sqrt{x}

Explanation

Solution

limh0x+hxh\lim_{h \rightarrow 0}\frac{\sqrt{x + h} - \sqrt{x}}{h} = limh0x+hxh×x+h+xx+h+x\lim_{h \rightarrow 0}\frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}}

= limh0(x+h)xh(x+h+x)\lim_{h \rightarrow 0}\frac{(x + h) - x}{h(\sqrt{x + h} + \sqrt{x)}} = limh0hh(x+h+x)\lim_{h \rightarrow 0}\frac{h}{h(\sqrt{x + h} + \sqrt{x})} = 12x\frac{1}{2\sqrt{x}}

Trick : Applying ‘L’ Hospital’s rule, [Differentiating Nr and Dr with respect to h]

We get, limh012x+h01=12x\lim_{h \rightarrow 0}\frac{\frac{1}{2\sqrt{x + h}} - 0}{1} = \frac{1}{2\sqrt{x}}.