Solveeit Logo

Question

Question: \(\underset{0 \leq i}{\Sigma}\underset{< j}{\Sigma}\underset{< k}{\Sigma}\underset{< \mathcal{l}}{\S...

Σ0iΣ<jΣ<kΣ<lΣn\underset{0 \leq i}{\Sigma}\underset{< j}{\Sigma}\underset{< k}{\Sigma}\underset{< \mathcal{l}}{\Sigma}\underset{\leq n}{\Sigma} is equal to

A

n+1C4

B

n .n+1C4

C

n+1C3

D

n(n + 1)

Answer

n .n+1C4

Explanation

Solution

Σ0iΣ<jΣ<kΣ<lΣn\underset{0 \leq i}{\Sigma}\underset{< j}{\Sigma}\underset{< k}{\Sigma}\underset{\mathcal{< l}}{\Sigma}\underset{\leq n}{\Sigma} n = n Σ0iΣ<jΣ<kΣ<lΣn\underset{0 \leq i}{\Sigma}\underset{< j}{\Sigma}\underset{< k}{\Sigma}\underset{< \mathcal{l}}{\Sigma}\underset{\leq n}{\Sigma}

ß

Selection of 4 terms (from n + 1 terms)

= n. n+1C4