Solveeit Logo

Question

Mathematics Question on Derivatives

limx2x1002100x77277\underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{{{x}^{77}}-{{2}^{77}}} is equal to

A

10077\frac{100}{77}

B

10077(222)\frac{100}{77}({{2}^{22}})

C

10077(221)\frac{100}{77}({{2}^{21}})

D

10077(223)\frac{100}{77}({{2}^{23}})

Answer

10077(223)\frac{100}{77}({{2}^{23}})

Explanation

Solution

limx2x1002100x77227\underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{{{x}^{77}}-{{2}^{27}}}
=limx2x1002100x2×x2x77277=\underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{x-2}\times \frac{x-2}{{{x}^{77}}-{{2}^{77}}} (limxaxmamxa=mam1)\left( \because \underset{x\to a}{\mathop{\lim }}\,\frac{{{x}^{m}}-{{a}^{m}}}{x-a}=m{{a}^{m-1}} \right)
=limx2(x1002100x2)×1limx2(x77277x2)=\underset{x\to 2}{\mathop{\lim }}\,\left( \frac{{{x}^{100}}-{{2}^{100}}}{x-2} \right)\times \frac{1}{\underset{x\to 2}{\mathop{\lim }}\,\left( \frac{{{x}^{77}}-{{2}^{77}}}{x-2} \right)}
=100(2)99×177(2)76=100{{(2)}^{99}}\times \frac{1}{77{{(2)}^{76}}}
=10077(2)23=\frac{100}{77}{{(2)}^{23}}