Question
Mathematics Question on limits and derivatives
\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ \tan \left( \frac{\pi }{4}+x \right) \right\\}}^{1/x}} is equal to
A
e
B
e2
C
1/e
D
1/e2
Answer
e2
Explanation
Solution
\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ \tan \left( \frac{\pi }{4}+x \right) \right\\}}^{1/x}}=\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ \frac{1+\tan x}{1-\tan x} \right\\}}^{1/x}}
=\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ 1+\left( \frac{1+\tan x}{1-\tan x} \right) \right\\}}^{1/x}}
=\underset{x\to 0}{\mathop{\lim }}\,\,\,{{\left\\{ 1+\frac{2\tan x}{1-\tan x} \right\\}}^{1/x}}
(Form 1∞ )
=ex→0lim1−tanx2tanx.x1
=e2x→0lim(xtanx).x→0lim1−tanx1
=e2.1.(1−01)=e2