Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0sinx21cosx\underset{x\to 0}{\mathop{\lim }}\,\,\frac{\sin {{x}^{2}}}{1-\cos x} is

A

12\frac{1}{2}

B

00

C

11

D

22

Answer

22

Explanation

Solution

limx0sinx21cosx\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{sin\,{{x}^{2}}}{1-\cos \,x}
=limx0sinx22sin2x2=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{sin\,{{x}^{2}}}{2{{\sin }^{2}}\frac{x}{2}} [1cosx=2sin2x2]\left[ \because \,\,1-\cos \,x=\,2{{\sin }^{2}}\frac{x}{2} \right]
=limx0sinx2/x22sin2(x2)/x2=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin {{x}^{2}}/{{x}^{2}}}{2{{\sin }^{2}}\left( \frac{x}{2} \right)/{{x}^{2}}}
=limx0sinx2x2+limx02sin2(x2)x24×4=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin \,{{x}^{2}}}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}\left( \frac{x}{2} \right)}{\frac{{{x}^{2}}}{4}\times 4}
=1+\frac{2}{4}\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ \frac{\sin \frac{x}{2}}{x/2} \right\\}}^{2}}\,\,\,\,\,\,\left[ \because \,\,\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin x}{x}=1 \right]
=1+12×1=1+\frac{1}{2}\times 1
=2=2