Question
Mathematics Question on limits and derivatives
x→0lim1−cosxsinx2 is
A
21
B
0
C
1
D
2
Answer
2
Explanation
Solution
x→0lim1−cosxsinx2
=x→0lim2sin22xsinx2 [∵1−cosx=2sin22x]
=x→0lim2sin2(2x)/x2sinx2/x2
=x→0limx2sinx2+x→0lim4x2×42sin2(2x)
=1+\frac{2}{4}\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\\{ \frac{\sin \frac{x}{2}}{x/2} \right\\}}^{2}}\,\,\,\,\,\,\left[ \because \,\,\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin x}{x}=1 \right]
=1+21×1
=2