Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx01xsin1(2x1+x2)\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}{{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) =

A

2-2

B

00

C

22

D

\infty

Answer

22

Explanation

Solution

Put x=tanθθ=tan1xx=\tan \theta \Rightarrow \theta ={{\tan }^{-1}}x
\therefore limx01xsin1(2tanθ1+tan2θ)\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}{{\sin }^{-1}}\left( \frac{2\,\tan \theta }{1+{{\tan }^{2}}\theta } \right)
=limx01xsin1(sin2θ)=\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}\,{{\sin }^{-1}}(\sin 2\theta )
=limx01x.2θ=limx02tan1xx=\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}\,.2\theta =\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\tan }^{-1}}x}{x}
=2×limx0tan1xx=2\times \underset{x\to 0}{\mathop{\lim }}\,\,\frac{{{\tan }^{-1}}x}{x}
=2×1=2=2\times 1=2