Solveeit Logo

Question

Question: \[\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left...

limnnCx(mn)x(1mn)nx\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}is equal to
( a ) 0
( b ) 1
( c ) mx.emx!\dfrac{{{m}^{x}}.{{e}^{-m}}}{x!}
( d ) mx.emx!\dfrac{{{m}^{x}}.{{e}^{m}}}{x!}

Explanation

Solution

In this question what we have asked to do is we have to evaluate the given limit limnnCx(mn)x(1mn)nx\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}. What we will do is we will solve this question using the formula of binomial expansion and using its properties and then we apply the limit to evaluate the value of the function.

Complete step by step answer:
In given question, we have the function limnnCx(mn)x(1mn)nx\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}. We want to find the limit of function asnn\to \infty . so, what we will do is, we will first simplify the given function into simpler component functions and then apply the limit to evaluate the value of the function.
We know the combinatorial formulanCx=n!x!(nx)!{}^{n}{{C}_{x}}=\dfrac{n!}{x!\left( n-x \right)!} and n!=n(n1)(n2)(n3)......321n!=n(n-1)(n-2)(n-3)......3\cdot 2\cdot 1 known as factorial function
This can be simplified by cutting out the like terms in the numerator and denominator of the above formula to getnCx=n!x!(nx)!=n(n1)(n2)...321x!{}^{n}{{C}_{x}}=\dfrac{n!}{x!\left( n-x \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)...3\cdot 2\cdot 1}{x!}
Or, nCx=n!x!(nx)!=n(n1)(n2)...(nx+1)(nx)!x!(nx)!{}^{n}{{C}_{x}}=\dfrac{n!}{x!\left( n-x \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-x+1 \right)(n-x)!}{x!(n-x)!}
On simplifying we get,
nCx=n!x!(nx)!=n(n1)(n2)...(nx+1)x!{}^{n}{{C}_{x}}=\dfrac{n!}{x!\left( n-x \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-x+1 \right)}{x!}…..( i)
Now, we will consider the functionnCx(mn)x{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}. We can simplify and write nCx(mn)x{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}} as using equation ( i)
nCx(mn)x=n(n1)(n2)...(nx+1)x!(mxnx){}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-x+1 \right)}{x!}\left( \dfrac{{{m}^{x}}}{{{n}^{x}}} \right)……( ii )
Taking n common from all terms in numerator, we get
nCx(mn)x=nx(11n)(12n)...(1x+1n)x!(mxnx){}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\dfrac{{{n}^{x}}\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)...\left( 1-\dfrac{x+1}{n} \right)}{x!}\left( \dfrac{{{m}^{x}}}{{{n}^{x}}} \right)
Now, we will divide both numerator and denominator bynx{{n}^{x}}to simplify the function and get
=1(11n)(12n)...(1+1xn)x!mx=\dfrac{1\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)...\left( 1+\dfrac{1-x}{n} \right)}{x!}{{m}^{x}}
If we apply limit to this function asnn\to \infty , we will get
limnnCx(mn)x=limnn(n1)(n2)...(nx+1)x!(mxnx)\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-x+1 \right)}{x!}\left( \dfrac{{{m}^{x}}}{{{n}^{x}}} \right)
limnnCx(mn)x=limn1(11n)(12n)...(1+1xn)x!mx\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)...\left( 1+\dfrac{1-x}{n} \right)}{x!}{{m}^{x}}.
We observe that asnn\to \infty , we get1n0\dfrac{1}{n}\to 0.
Hence, all the terms in the numerator oflimn1(11n)(12n)...(1+1xn)x!mx\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)...\left( 1+\dfrac{1-x}{n} \right)}{x!}{{m}^{x}}achieves the value11.
Thus, we get
limnnCx(mn)x=limnn(n1)(n2)...(nx+1)x!(mxnx)\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-x+1 \right)}{x!}\left( \dfrac{{{m}^{x}}}{{{n}^{x}}} \right)
limnnCx(mn)x=limn1(11n)(12n)...(1+1xn)x!mx=1mxx!\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1\left( 1-\dfrac{1}{n} \right)\left( 1-\dfrac{2}{n} \right)...\left( 1+\dfrac{1-x}{n} \right)}{x!}{{m}^{x}}=1\dfrac{{{m}^{x}}}{x!}
limnnCx(mn)x=mxx!\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\dfrac{{{m}^{x}}}{x!}.
Now, we observe the term(1mn)nx{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}. As we apply the limits, we observe that we can write(1mn)nx{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}as
(1mn)nx=1(mn)+(mn)212!(mn)313!+...{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}=1-\left( \dfrac{m}{n} \right)+{{\left( \dfrac{m}{n} \right)}^{2}}\dfrac{1}{2!}-{{\left( \dfrac{m}{n} \right)}^{3}}\dfrac{1}{3!}+....
Now, see if nn\to \infty , then in (1mn)nx{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}, the value inside bracket tends to 1 and power tends to\to \infty which form case of 1{{1}^{\infty }} which is inderminate form.
And we know that limx(f(x))g(x)=elimxg(x)logf(x)\underset{x\to \infty }{\mathop{\lim }}\,{{\left( f(x) \right)}^{g(x)}}={{e}^{\underset{x\to \infty }{\mathop{\lim }}\,g(x)\log f(x)}} , for 1{{1}^{\infty }}case.
Hence, we can writelimn(1mn)nx=limne(nx)log(1mn)\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}=\underset{n\to \infty }{\mathop{\lim }}\,{{e}^{(n-x)\cdot log\left( 1-\dfrac{m}{n} \right)}}.
We know that, log(1x)=xx22x33x44........\log (1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-........
So, limn(1mn)nx=limne(nx)(mn(mn)22(mn)33(mn)44........)\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}=\underset{n\to \infty }{\mathop{\lim }}\,{{e}^{(n-x)\cdot \left( -\dfrac{m}{n}-\dfrac{{{\left( \dfrac{m}{n} \right)}^{2}}}{2}-\dfrac{{{\left( \dfrac{m}{n} \right)}^{3}}}{3}-\dfrac{{{\left( \dfrac{m}{n} \right)}^{4}}}{4}-........ \right)}}
On solving we get,
limn(1mn)nx=em\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}={{e}^{-m}}
We havelimn(1mn)nx=em\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}={{e}^{-m}}andlimnnCx(mn)x=mxx!\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}=\dfrac{{{m}^{x}}}{x!}.
We know that, limxaf(x)g(x)=limxaf(x)limxag(x)\underset{x\to a}{\mathop{\lim }}\,f(x)\cdot g(x)=\underset{x\to a}{\mathop{\lim }}\,f(x)\cdot \underset{x\to a}{\mathop{\lim }}\,g(x) , so using this property
Thus, by combining the two formulas, we get
limnnCx(mn)x(1mn)nx=limnnCx(mn)xlimn(1mn)nx\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}=\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}
limnnCx(mn)x(1mn)nx=mxx!(em)=mxemx!\underset{n\to \infty }{\mathop{\lim }}\,{}^{n}{{C}_{x}}{{\left( \dfrac{m}{n} \right)}^{x}}{{\left( 1-\dfrac{m}{n} \right)}^{n-x}}=\dfrac{{{m}^{x}}}{x!}\left( {{e}^{-m}} \right)=\dfrac{{{m}^{x}}{{e}^{-m}}}{x!}as the required limit.

So, the correct answer is “Option C”.

Note: It’s necessary to first simplify the expressions and then apply the limit into component functions instead of directly applying the limit to the actual function. We can see that even after applying the limitnn\to \infty , it’s not necessary that the function will blow up to\infty . We can get a finite value of the function even after applying an infinite limit.