Solveeit Logo

Question

Question: under root of 1+ sin theta by binomial expansion...

under root of 1+ sin theta by binomial expansion

Answer

1 + \frac{1}{2}\sin \theta - \frac{1}{8}\sin^2 \theta + \frac{1}{16}\sin^3 \theta - \dots

Explanation

Solution

The question asks for the binomial expansion of 1+sinθ\sqrt{1 + \sin \theta}.

The binomial theorem for a real exponent nn is given by: (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots This expansion is valid for x<1|x| < 1.

In this problem, we have 1+sinθ\sqrt{1 + \sin \theta}, which can be written as (1+sinθ)1/2(1 + \sin \theta)^{1/2}. Here, x=sinθx = \sin \theta and n=12n = \frac{1}{2}. For the expansion to be valid, we require sinθ<1|\sin \theta| < 1, which means θ(k+1/2)π\theta \ne (k + 1/2)\pi for any integer kk.

Let's compute the first few terms of the expansion:

  1. First term: 11
  2. Second term: nx=12(sinθ)nx = \frac{1}{2}(\sin \theta)
  3. Third term: n(n1)2!x2=12(121)2sin2θ=12(12)2sin2θ=142sin2θ=18sin2θ\frac{n(n-1)}{2!}x^2 = \frac{\frac{1}{2}(\frac{1}{2}-1)}{2}\sin^2 \theta = \frac{\frac{1}{2}(-\frac{1}{2})}{2}\sin^2 \theta = \frac{-\frac{1}{4}}{2}\sin^2 \theta = -\frac{1}{8}\sin^2 \theta
  4. Fourth term: n(n1)(n2)3!x3=12(121)(122)6sin3θ=12(12)(32)6sin3θ=386sin3θ=348sin3θ=116sin3θ\frac{n(n-1)(n-2)}{3!}x^3 = \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{6}\sin^3 \theta = \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{6}\sin^3 \theta = \frac{\frac{3}{8}}{6}\sin^3 \theta = \frac{3}{48}\sin^3 \theta = \frac{1}{16}\sin^3 \theta

Combining these terms, the binomial expansion of 1+sinθ\sqrt{1 + \sin \theta} is:

The binomial expansion of 1+sinθ\sqrt{1 + \sin \theta} is: 1+sinθ=1+12sinθ18sin2θ+116sin3θ\sqrt{1 + \sin \theta} = 1 + \frac{1}{2}\sin \theta - \frac{1}{8}\sin^2 \theta + \frac{1}{16}\sin^3 \theta - \dots

Note on common simplification: In the context of competitive exams like JEE/NEET, expressions like 1+sinθ\sqrt{1 + \sin \theta} are frequently simplified using trigonometric identities to a closed form. This simplification is as follows: We use the identities sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 and sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. Let x=θ2x = \frac{\theta}{2}. Then 1=sin2θ2+cos2θ21 = \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} and sinθ=2sinθ2cosθ2\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}. Substituting these into the expression: 1+sinθ=(sin2θ2+cos2θ2)+(2sinθ2cosθ2)1 + \sin \theta = \left(\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2}\right) + \left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) This is in the form of (a2+b2+2ab)(a^2 + b^2 + 2ab), which is the expansion of (a+b)2(a+b)^2. So, 1+sinθ=(sinθ2+cosθ2)21 + \sin \theta = \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^2. Taking the square root: 1+sinθ=(sinθ2+cosθ2)2=sinθ2+cosθ2\sqrt{1 + \sin \theta} = \sqrt{\left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^2} = \left|\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right| While this closed-form expression is a common simplification, the question specifically asked for the "binomial expansion", which refers to the infinite series.