Solveeit Logo

Question

Chemistry Question on Structure of atom

Uncertainty in position of an electron (mass of an electron is =9.1×1028g)9.1\times10^{-28}g) moving with a velocity of 3×1043 \times 10 ^4 cm/s accurate upto 0.001% will be (use h4π\frac{h}{4\pi} in uncertainty expression where h=6.626×1027h = 6.626 \times 10^{-27} erg s)

A

1.93 cm

B

3.84

C

5.76 cm

D

7.68

Answer

1.93 cm

Explanation

Solution

According to Heisenberg's uncertainty principle
\hspace15mm \Delta x \times \Delta v=\frac{h}{4\pi m}
here, Δx\Delta x = uncertainty in position
Δv\, \, \, \, \, \, \Delta v = uncertainty in velocity
\, \, \, \, \, \, \, \, \, \, \, \, \, h = Planck's constant (6.626×1027Js)(6.626 \times 10^{-27} Js)
\, \, \, \, \, \, \, \, \, \, \, \, \, m = mass of electron (9.1×1028kg)(9.1 \times 10^{-28} kg)
Here, Δv=0.001\Delta v=0.001 % of3×104of 3\times10^4
=0.001100×3×104=0.3cm/s\, \, \, \, \, \, \, \, \, \, \, \, =\frac{0.001}{100}\times3\times 10^4=0.3 cm /s
Δx=h4πmΔv\therefore\, \, \, \, \Delta x=\frac{h}{4\pi m \Delta v}
=6.626×10274×3.14×9.1×1028×0.3=1.93cm\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{6.626 \times10^{-27}}{4\times3.14 \times 9.1\times10^{-28} \times 0.3}=1.93 cm