Solveeit Logo

Question

Question: In an A.P. of 10 terms, the sum of terms at odd positions is 25 and the sum of terms at even positio...

In an A.P. of 10 terms, the sum of terms at odd positions is 25 and the sum of terms at even positions is 35. Find the value of 1i<j10aiaj\sum_{1 \leq i < j \leq 10} a_i a_j.

Answer

1455

Explanation

Solution

Given Sodd=25S_{odd} = 25 and Seven=35S_{even} = 35. The sum of all terms is S10=Sodd+Seven=25+35=60S_{10} = S_{odd} + S_{even} = 25 + 35 = 60.

We know the identity: (i=1nai)2=i=1nai2+21i<jnaiaj(\sum_{i=1}^{n} a_i)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{1 \leq i < j \leq n} a_i a_j

To find 1i<j10aiaj\sum_{1 \leq i < j \leq 10} a_i a_j, we need i=110ai2\sum_{i=1}^{10} a_i^2.

Let the A.P. be a1,a2,,a10a_1, a_2, \ldots, a_{10}. Sodd=a1+a3+a5+a7+a9=25S_{odd} = a_1 + a_3 + a_5 + a_7 + a_9 = 25 Seven=a2+a4+a6+a8+a10=35S_{even} = a_2 + a_4 + a_6 + a_8 + a_{10} = 35

Consider the differences between consecutive even and odd terms: a2a1=da_2 - a_1 = d a4a3=da_4 - a_3 = d ... a10a9=da_{10} - a_9 = d

Summing these differences: (a2+a4+...+a10)(a1+a3+...+a9)=5d(a_2+a_4+...+a_{10}) - (a_1+a_3+...+a_9) = 5d SevenSodd=5dS_{even} - S_{odd} = 5d 3525=5d35 - 25 = 5d 10=5d    d=210 = 5d \implies d = 2.

Also, a1+a3++a9=5a5=25    a5=5a_1 + a_3 + \dots + a_9 = 5a_5 = 25 \implies a_5 = 5. And a2+a4++a10=5a6=35    a6=7a_2 + a_4 + \dots + a_{10} = 5a_6 = 35 \implies a_6 = 7. This confirms d=a6a5=75=2d = a_6 - a_5 = 7 - 5 = 2.

Using a5=a1+4da_5 = a_1 + 4d, we get 5=a1+4(2)    a1=58=35 = a_1 + 4(2) \implies a_1 = 5 - 8 = -3. The terms are ai=a1+(i1)d=3+(i1)2=2i5a_i = a_1 + (i-1)d = -3 + (i-1)2 = 2i - 5.

Now, we calculate i=110ai2\sum_{i=1}^{10} a_i^2: i=110(2i5)2=i=110(4i220i+25)\sum_{i=1}^{10} (2i-5)^2 = \sum_{i=1}^{10} (4i^2 - 20i + 25) =4i=110i220i=110i+i=11025= 4 \sum_{i=1}^{10} i^2 - 20 \sum_{i=1}^{10} i + \sum_{i=1}^{10} 25 Using i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2} and i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}: =4(10(11)(21)6)20(10(11)2)+25(10)= 4 \left(\frac{10(11)(21)}{6}\right) - 20 \left(\frac{10(11)}{2}\right) + 25(10) =4(385)20(55)+250= 4 (385) - 20 (55) + 250 =15401100+250=690= 1540 - 1100 + 250 = 690.

Finally, using the identity: 21i<j10aiaj=(i=110ai)2i=110ai22 \sum_{1 \leq i < j \leq 10} a_i a_j = (\sum_{i=1}^{10} a_i)^2 - \sum_{i=1}^{10} a_i^2 21i<j10aiaj=(60)26902 \sum_{1 \leq i < j \leq 10} a_i a_j = (60)^2 - 690 21i<j10aiaj=36006902 \sum_{1 \leq i < j \leq 10} a_i a_j = 3600 - 690 21i<j10aiaj=29102 \sum_{1 \leq i < j \leq 10} a_i a_j = 2910 1i<j10aiaj=29102=1455\sum_{1 \leq i < j \leq 10} a_i a_j = \frac{2910}{2} = 1455.