Question
Question: In an A.P. of 10 terms, the sum of terms at odd positions is 25 and the sum of terms at even positio...
In an A.P. of 10 terms, the sum of terms at odd positions is 25 and the sum of terms at even positions is 35. Find the value of ∑1≤i<j≤10aiaj.

1455
Solution
Given Sodd=25 and Seven=35. The sum of all terms is S10=Sodd+Seven=25+35=60.
We know the identity: (∑i=1nai)2=∑i=1nai2+2∑1≤i<j≤naiaj
To find ∑1≤i<j≤10aiaj, we need ∑i=110ai2.
Let the A.P. be a1,a2,…,a10. Sodd=a1+a3+a5+a7+a9=25 Seven=a2+a4+a6+a8+a10=35
Consider the differences between consecutive even and odd terms: a2−a1=d a4−a3=d ... a10−a9=d
Summing these differences: (a2+a4+...+a10)−(a1+a3+...+a9)=5d Seven−Sodd=5d 35−25=5d 10=5d⟹d=2.
Also, a1+a3+⋯+a9=5a5=25⟹a5=5. And a2+a4+⋯+a10=5a6=35⟹a6=7. This confirms d=a6−a5=7−5=2.
Using a5=a1+4d, we get 5=a1+4(2)⟹a1=5−8=−3. The terms are ai=a1+(i−1)d=−3+(i−1)2=2i−5.
Now, we calculate ∑i=110ai2: ∑i=110(2i−5)2=∑i=110(4i2−20i+25) =4∑i=110i2−20∑i=110i+∑i=11025 Using ∑i=1ni=2n(n+1) and ∑i=1ni2=6n(n+1)(2n+1): =4(610(11)(21))−20(210(11))+25(10) =4(385)−20(55)+250 =1540−1100+250=690.
Finally, using the identity: 2∑1≤i<j≤10aiaj=(∑i=110ai)2−∑i=110ai2 2∑1≤i<j≤10aiaj=(60)2−690 2∑1≤i<j≤10aiaj=3600−690 2∑1≤i<j≤10aiaj=2910 ∑1≤i<j≤10aiaj=22910=1455.
