Solveeit Logo

Question

Question: $\begin{vmatrix} x+1 & 3 & 5\\ 2 & x+2 & 5\\ 2 & 3 & x+4 \end{vmatrix} = 0$, then x will be equal to...

x+1352x+2523x+4=0\begin{vmatrix} x+1 & 3 & 5\\ 2 & x+2 & 5\\ 2 & 3 & x+4 \end{vmatrix} = 0, then x will be equal to:

A

-1,-9

B

1,-9

C

-1,9

D

1,9

Answer

1,-9

Explanation

Solution

To solve the given determinant equation, we will use properties of determinants to simplify it before expansion.

The given equation is: x+1352x+2523x+4=0\begin{vmatrix} x+1 & 3 & 5\\ 2 & x+2 & 5\\ 2 & 3 & x+4 \end{vmatrix} = 0

Let DD denote the determinant.

Step 1: Apply column operation C1C1+C2+C3C_1 \to C_1 + C_2 + C_3

This operation adds the elements of the second and third columns to the first column.

D=(x+1)+3+5352+(x+2)+5x+252+3+(x+4)3x+4D = \begin{vmatrix} (x+1)+3+5 & 3 & 5\\ 2+(x+2)+5 & x+2 & 5\\ 2+3+(x+4) & 3 & x+4 \end{vmatrix}

D=x+935x+9x+25x+93x+4D = \begin{vmatrix} x+9 & 3 & 5\\ x+9 & x+2 & 5\\ x+9 & 3 & x+4 \end{vmatrix}

Step 2: Take (x+9)(x+9) common from the first column (C1C_1)

D=(x+9)1351x+2513x+4D = (x+9) \begin{vmatrix} 1 & 3 & 5\\ 1 & x+2 & 5\\ 1 & 3 & x+4 \end{vmatrix}

Step 3: Apply row operations R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1

These operations will create zeros in the first column, making the determinant easier to evaluate.

D=(x+9)13511(x+2)3551133(x+4)5D = (x+9) \begin{vmatrix} 1 & 3 & 5\\ 1-1 & (x+2)-3 & 5-5\\ 1-1 & 3-3 & (x+4)-5 \end{vmatrix}

D=(x+9)1350x1000x1D = (x+9) \begin{vmatrix} 1 & 3 & 5\\ 0 & x-1 & 0\\ 0 & 0 & x-1 \end{vmatrix}

Step 4: Evaluate the determinant

The resulting matrix is an upper triangular matrix. The determinant of a triangular matrix is the product of its diagonal elements.

D=(x+9)[1(x1)(x1)]D = (x+9) \cdot [1 \cdot (x-1) \cdot (x-1)] D=(x+9)(x1)2D = (x+9)(x-1)^2

Step 5: Set the determinant to zero and solve for xx

Given D=0D=0: (x+9)(x1)2=0(x+9)(x-1)^2 = 0

This equation holds true if either of the factors is zero:

  1. x+9=0    x=9x+9 = 0 \implies x = -9
  2. (x1)2=0    x1=0    x=1(x-1)^2 = 0 \implies x-1 = 0 \implies x = 1

Thus, the values of xx for which the determinant is zero are 11 and 9-9.