Solveeit Logo

Question

Question: What is the range of the function $g(x) = sec(x)$?...

What is the range of the function g(x)=sec(x)g(x) = sec(x)?

A

(0, \infty)

B

(-\infty,\infty)

C

(-1,1)

D

(-\infty,-1]\cup[1,\infty)

Answer

(-\infty, -1] \cup [1, \infty)

Explanation

Solution

The range of a function refers to the set of all possible output values (y-values) that the function can produce.

The given function is g(x)=sec(x)g(x) = \sec(x). We know that sec(x)\sec(x) is defined as 1cos(x)\frac{1}{\cos(x)}.

The range of the cosine function, cos(x)\cos(x), is [1,1][-1, 1]. This means that for any real number xx, 1cos(x)1-1 \le \cos(x) \le 1.

Now, let's consider the values of sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)} based on the values of cos(x)\cos(x):

  1. When cos(x)\cos(x) is positive: If 0<cos(x)10 < \cos(x) \le 1: As cos(x)\cos(x) approaches 0 from the positive side, 1cos(x)\frac{1}{\cos(x)} approaches ++\infty. When cos(x)=1\cos(x) = 1, 1cos(x)=11=1\frac{1}{\cos(x)} = \frac{1}{1} = 1. So, for 0<cos(x)10 < \cos(x) \le 1, the values of sec(x)\sec(x) are in the interval [1,)[1, \infty).

  2. When cos(x)\cos(x) is negative: If 1cos(x)<0-1 \le \cos(x) < 0: As cos(x)\cos(x) approaches 0 from the negative side, 1cos(x)\frac{1}{\cos(x)} approaches -\infty. When cos(x)=1\cos(x) = -1, 1cos(x)=11=1\frac{1}{\cos(x)} = \frac{1}{-1} = -1. So, for 1cos(x)<0-1 \le \cos(x) < 0, the values of sec(x)\sec(x) are in the interval (,1](-\infty, -1].

Combining these two cases, the range of sec(x)\sec(x) includes all real numbers except those strictly between -1 and 1. Therefore, the range of g(x)=sec(x)g(x) = \sec(x) is (,1][1,)(-\infty, -1] \cup [1, \infty).