Solveeit Logo

Question

Question: Simplify: $\frac{log_3 512}{log_3 8} \times \frac{log_3 3}{log_3 9} | \frac{log_3 3}{log_3 4} + \fra...

Simplify: log3512log38×log33log39log33log34+log33log34\frac{log_3 512}{log_3 8} \times \frac{log_3 3}{log_3 9} | \frac{log_3 3}{log_3 4} + \frac{log_3 3}{log_3 4}

Answer

3log344\frac{3 \log_3 4}{4}

Explanation

Solution

The problem asks to simplify the given logarithmic expression. The expression is: log3512log38×log33log39log33log34+log33log34\frac{\log_3 512}{\log_3 8} \times \frac{\log_3 3}{\log_3 9} \left| \frac{\log_3 3}{\log_3 4} + \frac{\log_3 3}{\log_3 4} \right. The symbol ' | ' is unconventional in this context. Assuming it represents division, the expression can be written as: log3512log38×log33log39÷(log33log34+log33log34)\frac{\log_3 512}{\log_3 8} \times \frac{\log_3 3}{\log_3 9} \div \left( \frac{\log_3 3}{\log_3 4} + \frac{\log_3 3}{\log_3 4} \right) We will simplify each part of the expression using logarithm properties:

  1. Change of Base Formula: logbalogbc=logca\frac{\log_b a}{\log_b c} = \log_c a
  2. Power Rule: logb(ak)=klogba\log_b (a^k) = k \log_b a
  3. Identity: logbb=1\log_b b = 1

Step 1: Simplify the first fraction log3512log38\frac{\log_3 512}{\log_3 8} Using the change of base formula, this is equivalent to log8512\log_8 512. Since 83=5128^3 = 512, we have log8512=3\log_8 512 = 3.

Step 2: Simplify the second fraction log33log39\frac{\log_3 3}{\log_3 9} Using the identity log33=1\log_3 3 = 1 and the power rule for log39\log_3 9: log39=log3(32)=2log33=2×1=2\log_3 9 = \log_3 (3^2) = 2 \log_3 3 = 2 \times 1 = 2. So, the fraction becomes 12\frac{1}{2}.

Step 3: Simplify the terms inside the parenthesis log33log34+log33log34\frac{\log_3 3}{\log_3 4} + \frac{\log_3 3}{\log_3 4} Since log33=1\log_3 3 = 1, each term is 1log34\frac{1}{\log_3 4}. So, the sum is 1log34+1log34=2log34\frac{1}{\log_3 4} + \frac{1}{\log_3 4} = \frac{2}{\log_3 4}.

Step 4: Substitute the simplified terms back into the main expression The expression now becomes: 3×12÷(2log34)3 \times \frac{1}{2} \div \left( \frac{2}{\log_3 4} \right)

Step 5: Perform the multiplication and division 32÷2log34\frac{3}{2} \div \frac{2}{\log_3 4} To divide by a fraction, multiply by its reciprocal: 32×log342\frac{3}{2} \times \frac{\log_3 4}{2} 3log344\frac{3 \log_3 4}{4}

Step 6: Further simplification (optional) We can express log34\log_3 4 in terms of log32\log_3 2: log34=log3(22)=2log32\log_3 4 = \log_3 (2^2) = 2 \log_3 2. Substitute this back into the expression: 3×(2log32)4=6log324=32log32\frac{3 \times (2 \log_3 2)}{4} = \frac{6 \log_3 2}{4} = \frac{3}{2} \log_3 2

Both 3log344\frac{3 \log_3 4}{4} and 32log32\frac{3}{2} \log_3 2 are simplified forms of the expression.

The final answer is 3log344\boxed{\frac{3 \log_3 4}{4}}.

Explanation of the solution: The expression is simplified by first interpreting the symbol '|' as division. Then, standard logarithm properties such as the change of base formula (logbalogbc=logca\frac{\log_b a}{\log_b c} = \log_c a), power rule (logb(ak)=klogba\log_b (a^k) = k \log_b a), and identity (logbb=1\log_b b = 1) are applied to simplify each fractional term. The simplified terms are then combined using the arithmetic operations.