Solveeit Logo

Question

Question: $u=0$ $g=10m/s^2$ $u=90m/s$ Find distance in 6 sec. (ii) distance in 8 sec. (iii) find time whe...

u=0u=0

g=10m/s2g=10m/s^2

u=90m/su=90m/s

Find distance in 6 sec.

(ii) distance in 8 sec.

(iii) find time when h=10mh=10m

Answer

Distance in 6 sec = 360 m

Distance in 8 sec = 400 m

Time when h=10mh=10\,\text{m}:   t=979t = 9-\sqrt{79} seconds (approximately 0.11 sec) and   t=9+79t = 9+\sqrt{79} seconds (approximately 17.89 sec)

Explanation

Solution

Solution:

We use the equation for vertical displacement:

s=ut12gt2,s = ut - \tfrac{1}{2}gt^2,

with u=90m/su=90\,\text{m/s} and g=10m/s2g=10\,\text{m/s}^2.

(i) Distance in 6 sec:

s6=90(6)12×10×62=540180=360m.s_6=90(6)-\tfrac{1}{2}\times10\times6^2 =540-180=360\,\text{m}.

(ii) Distance in 8 sec:

s8=90(8)12×10×82=720320=400m.s_8=90(8)-\tfrac{1}{2}\times10\times8^2 =720-320=400\,\text{m}.

(iii) Time when h=10mh=10\,\text{m}:

Set

90t12×10t2=1090t5t210=0.90t-\tfrac{1}{2}\times10\,t^2=10 \quad \Longrightarrow \quad 90t-5t^2-10=0.

Rearrange:

5t290t+10=0.5t^2-90t+10=0.

Divide by 5:

t218t+2=0.t^2-18t+2=0.

Solve by the quadratic formula:

t=18±1824×1×22=18±32482=18±3162.t=\frac{18\pm\sqrt{18^2-4\times1\times2}}{2}=\frac{18\pm\sqrt{324-8}}{2}=\frac{18\pm\sqrt{316}}{2}.

Notice that 316=279\sqrt{316}=2\sqrt{79}. Thus,

t=18±2792=9±79.t=\frac{18\pm2\sqrt{79}}{2}=9\pm \sqrt{79}.

So the two times are:

t=979(0.11s)andt=9+79(17.89s).t=9-\sqrt{79}\quad (\approx0.11\,\text{s})\quad \text{and}\quad t=9+\sqrt{79}\quad (\approx17.89\,\text{s}).