Solveeit Logo

Question

Physics Question on mechanical properties of solids

Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in figure. The unloaded length of steel wire is 1.5 m and that of brass wire is 1 m. (YSteel=2×1011Nm2,YBrass=1×1011Nm2)\left(Y_{Steel}=2\times10^{11}\,N\,m^{-2}, Y_{Brass}=1\times 10^{11}\,N\,m^{-2}\right) The ratio of elongations of the steel wire to that of brass wire is

A

45\frac{4}{5}

B

54\frac{5}{4}

C

35\frac{3}{5}

D

53\frac{5}{3}

Answer

54\frac{5}{4}

Explanation

Solution

For steel wire, LS=1.5m,YS=2×1011Nm2L_{S}=1.5\,m, Y_{S}=2\times10^{11}\,N\,m^{-2} rS=0.252cm=0.125×102mr_{S}=\frac{0.25}{2}\,cm=0.125\times10^{-2}\,m The stretching force for the steel wire is FS=(4+6)g=10gNF_{S}=\left(4+6\right)g=10g\,N As Y=FLAΔL=FLπr2ΔLY=\frac{FL}{A\Delta L}=\frac{FL}{\pi r^{2}\,\Delta L} ΔL=FLπr2Y\therefore \Delta L=\frac{FL}{\pi r^{2}\,Y} ΔLS=FSLSπrS2YS\therefore \Delta L_{S}=\frac{F_{S}\,L_{S}}{\pi\,r^{2}_{S}\,Y_{S}} For brass wire, LB=1m,YB=1?1011Nm2L_B = 1 \,m, Y_B = 1 ? 10^{11}\, N\, m^{-2} rB=0.252cm=0.125×102mr_{B}=\frac{0.25}{2}cm=0.125\times10^{-2}\,m The stretching force the brass wire is FB=6gNF_{B}=6g\,N ΔLB=FBLBπrB2YB\therefore \Delta L_{B}=\frac{F_{B}\,L_{B}}{\pi r^{2}_{B}\,Y_{B}} Their corresponding ratio is ΔLSΔLB=FSFBLSLBrB2rS2YBYS\frac{\Delta\,L_{S}}{\Delta\,L_{B}}=\frac{F_{S}}{F_{B}} \frac{L_{S}}{L_{B}} \frac{r^{2}_{B}}{r^{2}_{S}} \frac{Y_{B}}{Y_{S}} Substituting the given values, we get =10g6g×1.51×0.125×1020.125×102×1×10112×1011=\frac{10\,g}{6\,g}\times\frac{1.5}{1}\times\frac{0.125\times10^{-2}}{0.125\times10^{-2}}\times\frac{1\times10^{11}}{2\times10^{11}} =54=\frac{5}{4}