Solveeit Logo

Question

Physics Question on Current electricity

Two wires AA and BB of equal masses and of the same metal are taken. The diameter of the wire AA is half the diameter of the wire BB. If the resistance of wire AA be 24Ω24\, \Omega , the resistance of BB will be

A

3Ω3 \,\Omega

B

1.5Ω1.5\, \Omega

C

4.5Ω4.5\, \Omega

D

6.0Ω6.0\,\Omega

Answer

1.5Ω1.5\, \Omega

Explanation

Solution

As both the wires AA and BB are made up of the same metal, therefore their resistivity as well their density are the same
Mass of a wire == volume ×\times Density
\therefore Mass of a wire A,MA=πrA2lAdA, M_{A}=\pi r_{A}^{2} l_{A} d
=πDA24lAd=\pi \frac{D_{A}^{2}}{4} l_{A} d
where dd is the density and DD is the diameter and subscript AA for wire AA
Mass of a wire B,MB=πrB2lBd=πDB24lBdB, M_{B}=\pi r_{B}^{2} l_{B} d=\pi \frac{D_{B}^{2}}{4} l_{B} d
MA=MB\because M_{A}=M_{B} (Given)
πDA24lAd\therefore \pi \frac{D_{A}^{2}}{4} l_{A} d
=πDB24lBd=\pi \frac{D_{B}^{2}}{4} l_{B} d
lAlB=(DBDA)2(i)\frac{l_{A}}{l_{B}}=\left(\frac{D_{B}}{D_{A}}\right)^{2} \ldots(i)
Resistance of wire AA ,
RA=ρlAπrA2=ρ4lAπDA2(ii)R_{A}=\frac{\rho l_{A}}{\pi r_{A}^{2}}=\frac{\rho 4 l_{A}}{\pi D_{A}^{2}} \cdots(i i)
Resistance of wire BB,
RB=ρlBπrB2=ρ4lBπDB2(iii)R_{B}=\frac{\rho l_{B}}{\pi r_{B}^{2}}=\frac{\rho 4 l_{B}}{\pi D_{B}^{2}} \ldots(i i i)
Divide (iii)(i i i) by (ii)(i i), we get
RBRA=(lBlA)(DADB)2=(DADB)4(\frac{R_{B}}{R_{A}}=\left(\frac{l_{B}}{l_{A}}\right)\left(\frac{D_{A}}{D_{B}}\right)^{2}=\left(\frac{D_{A}}{D_{B}}\right)^{4}( Using (i))
But DA=12DBD_{A}=\frac{1}{2} D_{B} (Given)
RBRA=116\therefore \frac{R_{B}}{R_{A}}=\frac{1}{16} or RB=RA16R_{B}=\frac{R_{A}}{16}
=24 ohm 16=\frac{24 \text { ohm }}{16}
=1.5ohm=1.5 \,ohm