Solveeit Logo

Question

Question: Two waves travelling along same direction on the same string have equations: y<sub>1</sub> = A<sub>...

Two waves travelling along same direction on the same string have equations:

y1 = A1sin(ωt - kx + φ1)

y2 = A2sin(ωt - kx + φ2)

If A1> A2 and φ1> φ2, then according to the principle of superposition, the resultant wave has an amplitude A such that

A

A = A1 + A2

B

A = A1-A2

C

A2 ≤ A ≤ A1

D

A1- A2 ≤ A ≤ A1 + A2

Answer

A1- A2 ≤ A ≤ A1 + A2

Explanation

Solution

A = A12+A22+2A1A2cos(φ1φ2)\sqrt{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\left( \varphi_{1} - \varphi_{2} \right)}

Amin = A1 - A2 When φ1 - φ2 = π, 3π.......

and Amax = A1 + A2 when φ1 - φ2 = 0, 2π,.......

Thus A ≥ A1 - A2 A ≤ A1 + A2 .