Solveeit Logo

Question

Physics Question on Pressure

Two vessels A and B are of the same size and are at the same temperature. A contains 1 g of hydrogen and B contains 1 g of oxygen. PAP_A and PBP_B are the pressures of the gases in A and B respectively, then PAPB\frac{P_A}{P_B} is:

A

16

B

8

C

4

D

32

Answer

16

Explanation

Solution

Step 1: Use the Ideal Gas Equation:

PAVAPBVB=nARTAnBRTB\frac{P_A V_A}{P_B V_B} = \frac{n_A R T_A}{n_B R T_B}

- Given VA=VBV_A = V_B and TA=TBT_A = T_B, the equation simplifies to:

PAPB=nAnB\frac{P_A}{P_B} = \frac{n_A}{n_B}

Step 2: Calculate Moles of Each Gas:

- For hydrogen in vessel A:

nA=mass of hydrogenmolar mass of H2=1 g2 g/mol=12 moln_A = \frac{\text{mass of hydrogen}}{\text{molar mass of } H_2} = \frac{1 \text{ g}}{2 \text{ g/mol}} = \frac{1}{2} \text{ mol}

- For oxygen in vessel B:

nB=mass of oxygenmolar mass of O2=1 g32 g/mol=132 moln_B = \frac{\text{mass of oxygen}}{\text{molar mass of } O_2} = \frac{1 \text{ g}}{32 \text{ g/mol}} = \frac{1}{32} \text{ mol}

Step 3: Calculate the Ratio of Pressures:

PAPB=nAnB=12132=12×32=16\frac{P_A}{P_B} = \frac{n_A}{n_B} = \frac{\frac{1}{2}}{\frac{1}{32}} = \frac{1}{2} \times 32 = 16

So, the correct answer is: 16