Solveeit Logo

Question

Question: Two vertices of the triangle are \(\left( -1,4 \right)\) and \(\left( 5,2 \right)\) . If the centroi...

Two vertices of the triangle are (1,4)\left( -1,4 \right) and (5,2)\left( 5,2 \right) . If the centroid is (0,3)\left( 0,-3 \right) , then the third vertex of the triangle is.
(a) (4,15)\left( -4,-15 \right)
(b) (4,15)\left( 4,-15 \right)
(c) (4,15)\left( -4,15 \right)
(d) (2,3)\left( 2,3 \right)

Explanation

Solution

Hint : For solving this question first we will assume the coordinates of the third vertex of the given triangle to be at point (h,k)\left( h,k \right) . After that, we will apply the formula for the coordinates of the centroid of any triangle O(x1+x2+x33,y1+y2+y33)O\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) where (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) are the vertices of the triangle. Then, we will solve to get the values of hh and kk easily.

Complete step by step solution :
Given:
It is given that there is a triangle whose centroid is at point (0,3)\left( 0,-3 \right) and coordinates of two vertices are (1,4)\left( -1,4 \right) and (5,2)\left( 5,2 \right) . And we have to find the coordinates of the third vertex of the given triangle.
Now, let the given triangle is ΔABC\Delta ABC and the centroid is at the point OO where, A(1,4)A\equiv \left( -1,4 \right) , B(5,2)B\equiv \left( 5,2 \right) , C(h,k)C\equiv \left( h,k \right) and O(0,3)O\equiv \left( 0,-3 \right) .
Now, before we proceed we should know that if there is a ΔABC\Delta ABC where, A(x1,y1)A\equiv \left( {{x}_{1}},{{y}_{1}} \right) , B(x2,y2)B\equiv \left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\equiv \left( {{x}_{3}},{{y}_{3}} \right) . Then, the centroid of the ΔABC\Delta ABC will be at the point O(x1+x2+x33,y1+y2+y33)O\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) .
Now, we will use this result for solving this question.
Now, as per our assumption ΔABC\Delta ABC and centroid is at the point OO where, A(1,4)A\equiv \left( -1,4 \right) , B(5,2)B\equiv \left( 5,2 \right) , C(h,k)C\equiv \left( h,k \right) so, we have x1=1;x2=5;x3=h{{x}_{1}}=-1;{{x}_{2}}=5;{{x}_{3}}=h and y1=4;y2=2;y3=k{{y}_{1}}=4;{{y}_{2}}=2;{{y}_{3}}=k . Then,
O(x1+x2+x33,y1+y2+y33) O(1+5+h3,4+2+k3) \begin{aligned} & O\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \\\ & \Rightarrow O\equiv \left( \dfrac{-1+5+h}{3},\dfrac{4+2+k}{3} \right) \\\ \end{aligned}
O(4+h3,6+k3)\Rightarrow O\equiv \left( \dfrac{4+h}{3},\dfrac{6+k}{3} \right)
Now, as it is given that the centroid of the ΔABC\Delta ABC is at the point O(0,3)O\equiv \left( 0,-3 \right) . Then,
4+h3=0 h=4 6+k3=3 k=15 \begin{aligned} & \dfrac{4+h}{3}=0 \\\ & \Rightarrow h=-4 \\\ & \dfrac{6+k}{3}=-3 \\\ & \Rightarrow k=-15 \\\ \end{aligned}
Now, from the above result, we conclude that coordinates of the point CC will be (-4,-15). For better clarity look at the figure given below:

Thus, the third vertex of the given triangle will be at point (4,15)\left( -4,-15 \right) .
Hence, option (a) will be the correct option.

Note : Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, though the problem is very easy, we should use the formula for the coordinates of the centroid of a triangle correctly and avoid calculation mistakes while solving and after getting the result we should plot the given triangle on the graph for better understanding.