Solveeit Logo

Question

Physics Question on Motion in a plane

Two vectors A\vec{A} and B\vec{B} inclined at an angle θ\theta have a resultant R\vec{R} which makes an angle α\alpha with A\vec{A} and angle β\beta with B\vec{B} . Let the magnitudes of the vectors A\vec{A}, B\vec{B} and R\vec{R} be represented by AA, BB and RR respectively. Which of the following relations is not correct?

A

Rsin(α+β)=Asinα=Bsinβ\frac{R}{sin\left(\alpha+\beta\right)}=\frac{A}{sin\,\alpha}=\frac{B}{sin\,\beta}

B

Rsinα=Bsin(α+β)Rsin\alpha=Bsin\left(\alpha+\beta\right)

C

Asinα=BsinβAsin\alpha=Bsin\beta

D

Rsinβ=Asin(α+β)Rsin\beta=Asin\left(\alpha+\beta\right)

Answer

Rsin(α+β)=Asinα=Bsinβ\frac{R}{sin\left(\alpha+\beta\right)}=\frac{A}{sin\,\alpha}=\frac{B}{sin\,\beta}

Explanation

Solution

Let OP\overrightarrow{OP} and OQ\overrightarrow{OQ} represent two vectors A\vec{A} and B\vec{B} making an angle (α+β)\left(\alpha+\beta\right). Using the parallelogram method of vector addition, Resultant vector, R=A+B\vec{R}=\vec{A}+\vec{B} SNSN is normal to OPOP and PMPM is normal to OSOS. From the geometry of the figure, OS2=ON2+SN2=(OP+PN)2+SN2OS^2 = ON^2 + SN^2 = (OP + PN)^2 + SN^2 =(A+Bcos(α+β))2+(Bsin(α+β))2=\left(A+Bcos\left(\alpha+\beta\right)\right)^{2}+\left(Bsin\left(\alpha+\beta\right)\right)^{2} R2=A2+B2+2ABcos(α+β)R^{2}=A^{2}+B^{2}+2ABcos\left(\alpha+\beta\right) In ΔOSN\Delta OSN, SN=OS,Ssinα=RsinαSN = OS ,S sin\alpha = Rsin\alpha and in ΔPSN\Delta PSN, SN=PSsin(α+β)=Bsin(α+β)SN=PSsin\left(\alpha+\beta\right)=Bsin\left(\alpha+\beta\right) Rsinα=Bsin(α+β)\therefore Rsin\alpha=Bsin\left(\alpha+\beta\right) or Rsin(α+β)=Bsinα...(i)\frac{R}{sin\left(\alpha+\beta\right)}=\frac{B}{sin\,\alpha}\,...\left(i\right) Similarly, PM=Asinα=BsinβPM = Asin\alpha = Bsin\beta Asinβ=Bsinα...(ii)\frac{A}{sin\,\beta}=\frac{B}{sin\,\alpha}\,...\left(ii\right) Combining (i) and (ii), we get Rsin(α+β)=Asinβ=Bsinα...(iii)\frac{R}{sin\left(\alpha+\beta\right)}=\frac{A}{sin\,\beta}=\frac{B}{sin\,\alpha}\,...\left(iii\right) From eqn. (iii), Rsinβ=Asin(α+β)Rsin\beta=A\,sin\left(\alpha+\beta\right)