Solveeit Logo

Question

Question: Two vectors \(\alpha\)with ![](https://cdn.pureessence.tech/canvas_111.png?top_left_x=1346&top_left_...

Two vectors α\alphawith Let the magnitude3s of the vectors be represented by A, B and R respectively. Which of the following relations is not correct?

A

B

C

D

Rsinβ=Asin(α+β)R \sin \beta = A \sin ( \alpha + \beta )

Answer

Explanation

Solution

Let OP and OQ represent two vectors A\overrightarrow { \mathrm { A } } and (α+β)( \alpha + \beta ).

Using the parallelogram method of vector additions, Resultant vector,

SN is normal to OP and PM is normal to OS.

From the geometry of the figure.

OS2=ON2+SN2=(OP+PN)2+SN2\mathrm { OS } ^ { 2 } = \mathrm { ON } ^ { 2 } + \mathrm { SN } ^ { 2 } = ( \mathrm { OP } + \mathrm { PN } ) ^ { 2 } + \mathrm { SN } ^ { 2 } =(A+Bcos(α+β))2+(Bsin(α+β))2= ( A + B \cos ( \alpha + \beta ) ) ^ { 2 } + ( B \sin ( \alpha + \beta ) ) ^ { 2 } R2=A2+B2+2ABcos(α+β)\mathrm { R } ^ { 2 } = \mathrm { A } ^ { 2 } + \mathrm { B } ^ { 2 } + 2 \mathrm { AB } \cos ( \alpha + \beta )

In

And in ΔPSN,SN=PSsin(α+β)=Bsin(α+β)\Delta \mathrm { PSN } , \mathrm { SN } = \mathrm { PS } \sin ( \alpha + \beta ) = \mathrm { B } \sin ( \alpha + \beta )

\therefore

Or Rsin(α+β)=Bsinα\frac { \mathrm { R } } { \sin ( \alpha + \beta ) } = \frac { \mathrm { B } } { \sin \alpha } ….. (i)

Similarly

PM =

Asinβ=Bsinα\frac { A } { \sin \beta } = \frac { B } { \sin \alpha } …..(ii)

Combining (i) and (ii) we get

Rsin(α+β)=Asinβ=Bsinα\frac { \mathrm { R } } { \sin ( \alpha + \beta ) } = \frac { \mathrm { A } } { \sin \beta } = \frac { \mathrm { B } } { \sin \alpha } …(iii)

From (iii)

Rsinβ=Asin(α+β)R \sin \beta = A \sin ( \alpha + \beta )